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Abstract

Equilibrium quantum statistical methods are used to study the pair correlation
function for a magnetized free-electron gas in the presence of a hard wall that
is parallel to the field. With the help of a path-integral technique and a Green
function representation, the modifications in the correlation function caused
by the wall are determined both for a non-degenerate and for a completely
degenerate gas. In the latter case the asymptotic behaviour of the correlation
function for large position differences in the direction parallel to the wall and
perpendicular to the field, is found to change from Gaussian in the bulk to
algebraic near the wall.

PACS numbers: 05.30.Fk, 75.2Q

1. Introduction

As has been known since Boérral [1], edge effects play an important role in the physics of
magnetized charged-particle systems in equilibrium. In particular, the diamagnetic response of
these systems in the quantum regime is determined by electric currents flowing near the walls.
The profiles of these currents, and of the closely related particle density, for a non-interacting
magnetized electron gas near a hard wall parallel to the magnetic field have been investigated
in detail [2, 3—6]. Much less is known about the profiles in an interacting magnetized electron
gas.

Equally important for a physical understanding of the properties of an equilibrium
guantum system are the correlation functions. For positions in the bulk of the system these
have been studied extensively, both for a non-interacting magnetized electron gas and for
its interacting counterpart. For the non-interacting gas the bulk pair correlation function
can be determined analytically both for dilute systems at high temperatures and for dense
low-temperature systems, in which quantum degeneracy effects are important [7]. For the
interacting electron gas information on the behaviour of the bulk correlation functions is more
difficultto obtain. Even for the non-magnetized case these functions have surprising properties.
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In fact, it has been demonstrated that the bulk correlation functions of the interacting electron
gas possess slowly decaying tails with an algebraic dependence on the position difference [8].
For the magnetized interacting gas similar methods have been employed to prove the existence
of analogous algebraic tails, albeit with a different exponent [9].

The correlation functions are expected to change near a hard wall. For a non-magnetized
free-particle system these changes are easily determined by using a reflection principle [10].
The problem becomes a lot more complicated when either interactions between the particles
or amagnetic field or both are incorporated. In a recent paper [11] the interactions between the
charged particles have been taken into account in a model system consisting of two quantum
charges immersed in a classical plasma confined by a wall. An algebraic tail in the pair
correlation function of the quantum particles near the wall was found. However, the exponent
governing the algebraic tail turned out to be different from that of the bulk correlation functions
discussed above. The result corroborates earlier findings based on linear response arguments
[12]. The influence of a magnetic field on the surface correlation functions in the adopted
model system remains to be studied.

As the influence of a wall on the correlations in magnetized quantum systems is not yet
fully understood, it appears to be useful to try and investigate the correlation functions for the
relatively simple case of a non-interacting magnetized electron gas in the presence of a hard
wall. In the following we present some new results for this system. In particular, we will
analyse the correlations for the strongly degenerate case of high density and low temperature,
where the influence of Fermi statistics is important. Both strong and weak fields will be
considered, so that the number of filled Landau levels can vary considerably.

The paper is organized as follows. We start with two sections that serve to prepare the
ground. In section 2 we define the relevant correlation functions for a system of independent
particles and discuss their relation to the one-particle Green functions. The pair correlation
function in the bulk is considered in section 3, where the influence of the magnetic field
on the correlations is determined both analytically and numerically. After these preparatory
sections we start considering the influence of the wall in section 4. In that section we use the
so-called ‘path-decomposition expansion’, which follows from a path-integral formulation, to
determine the lowest-order corrections in the correlation functions at positions in the transition
region, where the presence of the wall starts to be felt. An alternative way to determine these
corrections is based on an eigenfunction expansion of the Green function, which is the subject
of section 5. The asymptotic form of the correlation functions for large position differences is
established in section 6, separately for directions parallel with and transverse to the magnetic
field. In section 7 the correlation functions for positions close to the wall are studied, again
for both directions. In the final section 8 some conclusions will be drawn.

2. Correlations

The equilibrium quantum statistical properties of a system of independent particles are
determined by the temperature Green function

Gpr,r) = (rle Py =" e Py, () yr (). (1)

Herep is the inverse temperature, atigd(r) andE, the eigenfunctions and eigenvalues of the
one-particle Hamiltoniaii, which is assumed to be independent of the spin of the particles.
The reduced single-particle density maitpix,, (r, ') of such a system at inverse temperature
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B and chemical potential is found by incorporating the effects of quantum degeneracy. For
Fermi—Dirac particles one has

1
Pl T) =23 | s Un (V) 2

where the spin degeneracy has been taken into account. The local particle dgnsityis
the diagonal part of (2).

For a completely degenerate system at zero temperature the reduced single-particle density
matrix becomes

pu(r, 1) =23 0(u — EDYn @y () = Gu(r.r') 3)

with 6 the step function. The diagonal part gives the local particle dengity) of the
completely degenerate system. Tin@lependent Green function, as defined here, is obtained
from the temperature Green function by an inverse Laplace transform [13]

, 1 ctioco eﬁ 2 ,
G (r,r>=—./ dp e Gyir.r) (4)
8 211 Jezioe g v
with ¢ > 0.
Then-particle reduced density matrbé’i (r, ¥) follows from its one-particle counterpart
by a symmetrized factorization:

PO = Y e Hlpw (rj,r;w.)). (5)
i

TeSH

Here the sum is taken over all permutations of thposition vectors, withke”™ the sign of
the permutation. The structure of theparticle reduced density matrix has been analysed
quite generally for a system of interacting particles by using a path-integral formalism [14].
The factorization property for a system of independent particles then follows as a special case.
The argument is not changed by incorporating an external magnetic field and a hard wall that
confines the system.

For the completely degenerate case a relation similar to (5) hoId«s,ﬁ’fb(tr”, r'’). In
particular, the diagonal part of the two-point reduced density matrix at zero temperature is

P2 1) = GG 1) — Gur. 1)G L 7). (6)
Often it is convenient to introduce the two-point correlation function
Dt oy /N2
9 G 9
g(r,r/)=7p“ rr rr/)_lz_ | ,L(rr)|/ —. (7
P () oy (r') Gur,nGu@',r)

In the following we will study this correlation function, and the influence of a magnetic field
and a hard wall on its properties.

3. Correlations in the bulk

We consider a system of charged particles which move in a magnetic field directed along the
z-axis. The interaction between the particles is neglected. To describe the magnetic field we
adopt the Landau gauge, with vector potendiak (0, Bx, 0). The particles are confined to

the half-space > 0 by a plane hard wall at = 0.
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For positions far from the wall the temperature Green func@irr, r’) reduces to the
bulk Green functiorG’/g(r, r). The latter is given by [13]

! b B /N2
V2P 47 SinNBB/2) E’X'O[_wa/zv(’L - }

B N2
X exp[%(x +x)(y — y/)i| exp[— (z 2’32 ) i| . (8)

Units have been chosen such that the charge and the mass of the particles drop out, while
h and c have been put to 1 as well. From now on we will often measure distances in
terms of the cyclotron radius/4/B. To that end we introduce the dimensionless variables
£ =VB(x+x)/2,6 =/B(x —x'),n=+B(y—y)and¢ = VB(z — 7).

The -dependent Green function follows by inserting (8) in (4). One finds

Gg (r,r) =

1 c+ioo B 1—612
b N Bv 0
Cu )= o /L._ioo P F g
= 1+4¢f 5 [ ¢? :|
expil - + exp| ——— 9
X p[én 820 (E°+n°) | exp 268 9)

with go = tanh(8B/4). The chemical potential is measured in terms of the energy difference
between adjacent Landau levels, by employing the dimensionless variable/B. Let us
use now the generating-function identity [15]

(1 - go)? 2} 40 < <52> <1—610>2"
ex — = Ln 2 10
p[ 840 ‘ (1+40)? V; 2 )\ 1+qo (10)
to express the exponential function in terms of Laguerre polynomials. After substitution of
(1 — qo)/(1 +qo) = e PB/2 this gives

/ B3/2 g2\ & £2 + 2
Gl (r.r) = exp<|§n— 2 >2(:)Ln( )

V2732 2

1 ¢’ +ico

n=|

2
xo— [ dselmr21 732 exp _& (11)
211 J oo 2s

where we have set= BB andc’ = ¢B. The sum over can be interpreted as a sum over
Landau levels.
The inverse Laplace transform in (11) can be found in [16]:
1 eree st —3/2 p—als __ 1 i
i ) dse'’ s™3/2e /s = msm(Z«/E) 6(t) (12)
fora > 0 andc > 0. Use of this identity in (11) results in the following expression for the
u-dependent Green function in the bulk:

3/2 _ 2,2
Gl (r,r) = B—zexp<i.§n—S Al )
T

4
/ g2+ 2\ sin(v2[v — (n +1/2)]¢)
x; Ly, < 5 ) ; : (13)

The prime indicates that the summation is only over those value$oofwhichv — (n +1/2)
is positive, i.e. over the Landau levels that are at least partially filled. The bulk density follows
as the diagonal part of (13):

ph = Gh(r.r) =

2 3/2 ,
fi Y V=@ +1/2. (14)

b/
The two-particle correlation function is found upon substitution of (13) and (14) in (7).
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The expressions (13) and (14) are particularly useful for strong fields when only a few
Landaulevels are occupied. An alternative expression, which is useful for weak fields only, has
been derived in [7]. To study the limit — 0in (13), we return to the original variables, since
measuring the distances in terms of the cyclotron radius, or the chemical potential in terms
of the energy difference between adjacent Landau levels, becomes meaningless for vanishing
magnetic fields. The number of terms in the sum becomes large, as the upper limit is inversely
proportional toB at fixed u. Furthermore, the argument of the Laguerre polynomial gets
small for fixedx — x” andy — y’. Hence, we can use the asymptotic form of the Laguerre
polynomials [15]

L,(u) ~ /2], (,/2(2n + l)u) (15)

which is valid foru/(n + 1/2)1/2 « 1. Use of this approximation gives

3/2 i I oy ,
) ~ an exp['B(x +x)(y ”}Z’O( /ZB(n+1/2)|rL—fl|)

2
sin[v2[u — B(n + 1/2)[(z — 2]
16
) VB(z—7) “e

for small magnetic fields. The subscriptslenote the transverse parts of the position vectors,
which follow by projection on they-plane.

If B approaches zero, the number of Landau levels becomes very large, and their spacing
becomes very small. Therefore, it is permitted to replace the summation over Landau levels
in (16) with an integral. In the limit of vanishing we get

Gt () = i/“dz Jo (V2rirs —r11) sinly2u=nG =] 4
0

72 77—z

With the help of the identity [17]

a
/ dx x"*Lsin (b\/a2 - xz) Jy(x)
0
= \/ga‘”s/zb(l +b2) 72304, a0 (a\/ 1+ b2) (18)

for v = 0, we arrive at
21/4M3/4 1
G, r) = o AT RO (,/2M|r—r’|). (19)

Note that the right-hand side is an isotropic function of the position difference, as should be
the case for a vanishing magnetic field. We can simplify it further by using the explicit form
for the Bessel function

2 sinu — u cosu
J32(u) = \/;T (20)

The final result is

b N o
Gﬂ(r,r)_—

1 P [@cos(@V—rﬂ) -

7'[2|r —

ﬁ sin(@lr—r/lﬂ (21)

which is identical to what one gets by starting from the temperature Green function for the
non-magnetized system

Ghar.r') =

(r—r’)2:| (22)

2np)32 exp[_ 26
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(@) (b)

0.00 Far A 0.00
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Nplrer Nplr=r
Figure 1. Bulk correlation functiong (xyz, xy'z) (——), g(xyz, xyz') (------ ) for B # 0 and
(@) v=2,()v=05,andg(r,r) (— —)for B = 0. All curves start at-1 forr = r'.

and applying (4). The bulk density in the field-free casefis= (21)%2/(37?). The
two-particle correlation function in the bulk follows upon inserting (21) in (7).

In figure 1 we have plotted the bulk correlation function fe= 0 and forB # 0 with
v = 2 andv = 5. For non-vanishing magnetic field we focused on the correlation functions
with position differences that are either parallel with, or perpendicular to, the magnetic field.
For large fields, or, more precisely, for smalthe correlation functions for the parallel and the
perpendicular directions differ considerably. For somewhat largleowever, the correlation
functions become fairly similar, both in the nodal structure and in the amplitudes. As it turns
out, these similarities are manifest alreadyifoe 5, where the number of completely filled
Landau levels is still rather low.

Comparing (21) with (13), we see that by turning on the magnetic field the range of the
correlations in the plane perpendicular to the magnetic field becomes smaller, with a Gaussian
instead of an algebraic decay. In contrast, the range of the correlations in the direction
parallel to the magnetic field becomes somewhat larger. In fact, although the decay remains
algebraic when the field is switched on, the dominant contribution in the tail of the correlation
function becomes inversely proportional to the square of the distance, whereas it is inversely
proportional to the fourth power of the distance in the field-free case.

4. Path-decomposition expansion

Introducing the wall at = 0 makes the temperature Green function dependent on the distance
from the wall, i.e. the coordinate In the absence of a magnetic field the influence of the
wall on the Green function is easily found from a reflection principle [10]. The temperature
Green function becomes

Gp(r,r') = Ghr.r') = Gh(r.r") (23)
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with the bulk Green function (22) and the reflected positirdefined as(x”, y”, z”) =
(—x',y’,7'). Likewise, theu-dependent Green function gets the form

Gur.r)=Ghr.r) - G, 1) (24)
with the bulk Green function (21).
When a magnetic field is present, the influence of the wall on the properties of the system

is more difficult to determine. In [6], we have seen that the temperature Green function can
be found from a path-decomposition expansion

[ee)
Gpr.r) =Y Gy (r.r) (25)
n=0
where G,(g’”(r, r) is the contribution from paths that hit the wall times. This path-
decomposition expansion, which was first formulated in [18], is fully equivalent to the
multiple-reflection expansion as introduced in [19], and discussed for a confined magnetic
system in [4]. We have also seen in [6] that faandr’ at large distances from the wall, the
terms with smalk in (25) are more important than those with largein particular, the: = 1
term will give us the leading-order correction on the bulk quantities. The latter correspond to
n = 0, so that one ha@/(go) (r,r) = G%(r,r). If no field is present the expansion terminates
after the term withn = 1, for all distances from the wall.
In the particular case where= x’, the transverse part of the= 1 term has the form
[4, 6]

Gf)ﬂ(xy, xy) = 160-[3/2 / dr f( z(xy, xy") exp[gﬂ L(xy, xy )] ) (26)
The functionsf(l) (xy, xy") andg/S r(xy, xy’) are given by
1 (a)l/? 1,1

A - + 27

foa Gy, xy') = 2imrZ \5 ' s E+in (27)

and
1f/1 1 — 2
& Ne —Z (242 ) E2 Zoigy + T 28
8 (XY, xy) 4[<t1 tz)é Ent (28)

with 1 = tanh(t B/2), s1 = sinh(t B/2), t» = tanh(B8 — ) B/2) andsz = sinh((8 — t) B/2).

4.1. Casey # y'
If we setp = g2/ (q2 — q?), with ¢ = tanh[27 — B)B/4] andqo = tanhfB/4), we can
write (26) as

B 1-g43 &% iEn  1+gb
(1) N 0 0 2
GLpy. XY) = =7 3532 P Xp( 24, i 1640

R e
o Vrd+p) 2 m
Xexp[_m? 1-g§1+(1+45)p 2]_ (29)
290 160 1+(1— @) p
Whené is large, only small values c(ﬂ — qg) p contribute, which implies that we can set
‘/1+(1— qg)p ~ 1. Furthermore, we can replace the last exponential function with
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exp[— (1 — ¢8) n%/(16q0)], at least as long a is finite. If we make those substitutions
and use

o] dp
— e =¢"?Koy(a/2) (30)
./o vp+p)
(whereKj is the modified Bessel function of the second kind), we get
; 2
@ n B = in \1—g¢;
Gl’ﬁ(-xyv-xy) ~ _27/27_[3/2 (s + qu) q3/2
0
1+qi— &n  1? 1-45
x exp| — +i—— — | K . 31
p( 440'5E 28610046105 (1)

If we are only interested in the non-degenerate case, where in getieray2)&2/qo
is large, we can use the asymptotic expansionkfgi{15]. Multiplying the result with the
longitudinal Green function, which is the same as in the bulk, we find the first-order correction
to the total temperature Green function in the approximate form

1- q2 £2 P 2
W iy~ B O expf— 5= 480 _n°
Gg (xyz, xy'z) = 272732612 g eXp( 200 3 80 (32)
However, for the degenerate case we need the full complexity of (31).

In order to obtain results for the degenerate case, we now apply (4). In doing so we choose
the contour of integration by settirgy= (ir + 1)/ B:

B32 - 00 evé(ir+) in 1— g2
(1) ' = dén/2 - s - 10
G, (xyz,xy'z) 1 351/28 /_oo dt(it+1)3/2 (§+ ZqO) qg/z
l+g5  »? 1-4o
xexpl ———&° — — | Ko ) 33
p( ™ 3 870 ™ 3 (33)

In the new variablego equals tanhfr + 1)&/4]. Fromé > 1 one findsgp ~ 1, which in
turn implies 1—gg ~ 4 exp[-&£ (it + 1)/2]. This also means that for finitewe may replace
& +inqo/2 with &. With the help of the series representation of the modified Bessel function

o0 n 1 1
Ko(u) =Y [Z ~—y- Iog(%)} Wuz" (34)

n=0 Lm=1
and the integral relation
o0 e(it+l))c o xv—l
/ dr — =
oo (it + 1) I'(v)
we arrive at the asymptotic expression

325 o 4
B 5e—52/2€45n/2e—n2/82’ &
n

0(x) (v > 0) (35)

D ') A —
GM (xyz,xy'z) 75/2 221 (p1)2

1 "1 £2
N V) ) D= ] (e 36
Y T T TN 2 (36)
which is valid for largev'Bx. Again, we recognize the sum over Landau levels. In fact, apart

from the phase'&/2 and the factor /8, the result is identical to what we found in [6] for
r=r.
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4.2. Case 7z # 7/

This case is considerably simpler than the y’-case, since the temperature Green function
factorizes. The transverse part of the Green functions follows from (31) by takiag0.

Using the asymptotic expansion for the Bessel function and introducing the longitudinal part
of the Green function, one finds the total temperature Green function for the non-degenerate
case withz # 7 as

2 p—
B 1-¢q; 52 ;2
GV (xyz, xyz) ~ — exp|—=— — =— 37
p (xyz, xyz) 21/23/2 81/2 g4 p( 290 2/33) (37

which is the analogue of (32).

To calculate the.-dependent Green functic(hf}) (xyz, xyz’) for the degenerate case we
need to keep the Bessel function in (31). Witk 8B we get

BS/ZE_ 1 c+ioo e 1 — C] 1 +q2
G ’ NP : / ds — 10 axpl = 0:2
i (Y2, xyz) 872 2 Joing 892 3/2 P 490 :

1— 2 2
x Ko ( 4qc6)10 §_2> exp<—§—s) . (38)

We are free to choose the contour of integration, as long as it is in the right half-plane. By
choosing large (i.e.c = &), we can make the same approximationgpand 1—q§ as before.

In terms of the integration variablethese approximations regg ~ 1 and 1— g3 ~ 4e~*/2,
Together with (34) this yields

B32E . X 1 [Etioo
Gf})(xyz, xy7) & ——5 g E/2 Z § —/_ ds eV~ (+1/2)s
&
n

2m? — 220(nN2 271 J7ioo

11 "1 £2 1 2

The integral in this expression is still an inverse Laplace transform. With the help of (12) and
the analogous identity [16]

1 c+ioo 1
ds e s~ L2 /s — = cos(Z\/H) (1) (40)
T

271 Je—ioo

fora > 0 (andc > 0) we finally get the asymptotic expression

Jv—(m+1/2)

33/25_ 2 ’
® N A — —& /22
G (yz. xye) =~ 75/2 © 221 (n1)?
n

cos(v/2[v = (n + 1/2)]¢)
17 ab-w+12)]

 sn(v2Z— T 172) e
V2~ 12 Lzl" - <7>” )

for largev/Bx. This result looks a bit more complicated than (36). In the lignit> 0 we
recoverG,(}) (xyz, xyz), as calculated in [6].

Before we discuss the expressions (36) and (41) in more detail, we will first show that the
same results can be derived using a different approach.
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5. Parabolic cylinder functions

Results equivalent to those of the previous section can be derived by using the explicit
representation of the temperature Green function in terms of parabolic cylinder functions,
which are the eigenfunctions of the transverse part of the system Hamiltonian. Because of
translation invariance in thedirection, itis convenientto use a Fourier transform and to write
the transverse part of the Hamiltonian as
102

Hil)==5-5+5 (B — k)2 (42)
For fixedk, this Hamiltonian with boundary conditiafi(k, x = 0) = 0 defines an eigenvalue
problem. In terms of the eigenfunctiogis (k, x) and the corresponding eigenvalugs(k)
we define the Fourier-transformed transverse energy Green function [5]

Gk, x,x) =" Yulk, )Y (k, x") § [En (k) — E] (43)

where the eigenfunctions are normalizedfg%? dx |y, (k, x)|? = 1. In terms of this energy
Green function the (total) temperature Green function (1) is

Gp(r,r') = (2n8) 2 expl-(z — 2)%/26]
o) 1 o) . ,
x/ dE e—ﬂE—/ dk €0 G| gk, x, x'). (44)
0 2m —00
Performing the inverse Laplace transform as in (4) and using (12), we obtain
sin «/Z(M E)(z —
G,u(r,r)= / dE
z—7 _
We now choosec = x’/, as before, and switch again to the dimensionless variahles

(and a dimensionless Fourier variahle= k/+/B as well). In terms of these, the energy
Green function is [5]

GLetk,x,x)= \/—Z

2 /oo dk k00 G ek, x, x"). (45)

D2 4y 1 [V2E )]
J7 68 D2 ) [V2E -]

Here D, (1) is a parabolic cylinder function [15]. Furthermokg(x) is determined by the
boundary condition

De,e)-1/2 (—JEK) —0. (47)

If we now carry out the integration ovérin (45), we get

B3/2 ,/oo 4o gn SN (V2D = @ )

S[E — Be, (x)]. (46)

Gu(xyz,xy'7) = —
M(y y ) 7T2 -

2 (V) ¢
D2 4y 1 [V2E — 0]

fo dg’ DZ -1/2 [\/i(.f;_/—;c)]

wherex, (v) is determined by, [«, (V)] = v.

In figure 2 we have plotted the resulting correlation function, which we calculated
numerically for several values ofand for a value of the chemical potential, which corresponds
to a completely filled lowest Landau level. Even at moderately small distances from the wall
the influence of the confinement on the correlation function is not very big. thiection
the correlations become a little stronger. The same is true for the correlationsiditieetion,
at least for smalt. However, the oscillating tail in the correlation function is suppressed by
the presence of the wall.

(48)
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0.0 —
~0.1F 1
-0.2 ‘

0 8 10

Figure 2. Correlation functionsd) g(xyz,xy'z) and ¢) g(xyz,xyz/) foré = 1 (—),& =5
(—-—) and in the bulk§ — oo, - - - -) forv = 1.5. The curves fot€ = 5 and for the bulk are
(almost) indistinguishable.

5.1. Casey # y'

Taking the limitz" — z or ¢ — 0in (48) is trivial. The resulting formula contains a phase-
factor &7, which is absent in the case= y’ as considered in [5]. We first split off the bulk
contribution

GZ (xyz,xy'z) = (49)

w2 V!
The remaindeGy, (xyz, xy'z) = G, (xyz, xy'z) — GZ(xyz, xy'z) gives the correction due to
the wall.

In order to obtain an asymptotic expansion@f (xyz, xy'z) for largex we split the
integration at’ = o’¢, with 0 < o’ < 1— 34/2, andk” = o€, with o’ > 3+/2. Asin the
case withr =7/, the contributions from the intervalg,[(v), «'] and [k”, co) decay faster than
exp(—&2/2). With the help of the asymptotic expressions [5]

T / e YD a5,

€n(ic) — (n + %) ~ \/Elm on e—Kz K2”+l (50)
R _ -1

{/0 d§" DZ (o)-1/2 [\/5(5 - K)]}

~ 1 1 el ? onal noq

b 7 n! B JT(n!)22 € K [;E_V—ln(@)] (51)
and
Dezn(x)—l/z [\/E(S_— K)] 2" e—@—'()2 (g_ K)Zn

' ﬁ e 6 e E 102 ln [V2(E — )] (52)
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n n

Figure 3. Comparison between numerical data (——) and asymptotic form (- - - -) of the real
part of G, (xyz, xy'z)/ G (xyz, xyz) at (@) = 3and ) £ =5forv =15

one finds

ﬁBS/Z , 22n+1
w2 - 7 (n!)?2

Jv—(n+1/2)

Gy (xyz, xy'z) &

x /K dic €41 " @ =0 2L E )21 p (e E i) (53)
with
_ 1 "1 _
P,,(K,S—K):—{m+;;—y—ln[2x(§—x)]}. (54)

We now expand the integrand in (53) arounek & /2:
/ die €47 e = E0? 2L E _ 20 p e E )
/2 8212 (E oyl b 12 By [ dp 212
~ SN eTS (5 /)M Py(5/2,€/2) dre (55)
—0Q

since the main contribution comes from the region arodng &/2, at least forg > 1.
Evaluating the remaining integral gives us exactly (36).

Note that in this case, instead aﬁf}) (xyz,xy'z), we have in fact calculated
G{,(xyz, xy'z). However, since the terms beyome= 1 in the path-decomposition expansion
(25) are of higher order, the asymptotic form@f, (xyz, xy’z) is in leading order identical

to that ofo})(xyz,xy’z). In the present case we can easily take along more terms in
(54) (see [5]). The expansion arourd= £/2 given here is only valid fon <« &. |If

n is of the same order of magnitude asthe terms that we left out would not be small
compared to the leading term and we would not get the right asymptotics. In figure 3 we
compare the results of a numerical evaluation of the exact expression for the real part of
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1.2

1.0

0.8

Figure 4. Check of the Gaussian decay, by evaluation «@n_l[loqu;(xyz,xy/z)l/
|GS, (ryz, xy2)DIY/2, for v = 15 and§ = 5 (—), & = 4 (—-—) and& = 3 (----).
The dotted line (- - - - - ) is the asymptotic value according to (36).

the wall correctiorG¢, (xyz, xy'z)/ G§,(xyz, xyz), which follows from (48) and (49), and the
asymptotic form in leading order, as derived in (36). As expected, the agreement is best
for smally. The imaginary part o6, (xyz, xy’z)/G;(xyz, xyz) behaves in a similar way.

A striking feature of the asymptotic expansion (36) is its Gaussian decay proportional to
e "’/8, It is slower than the decay of the bulkdependent Green function (13), which is
proportional to e"*/4. This somewhat slower decay is indeed corroborated by the numerical
evaluation ofG¢, (xyz, xy'z)/ G{,(xyz, xyz), as is shown in figure 4. For smajland larges
(i.e. for the regime where (36) holds) the curves converge to the asymptotic value 1.

52. Casez # 7

On settingy = y’ in (48) the phase-factof® drops out. With the help of the same asymptotic
expressions as in the case with# y’, and the same splitting of the integration interval, we
arrive at the asymptotic expression

\/§B3/2 ’ 22n+1
. I\
Gl (xyz, xy) ~ —

Vv—m+1/2)

- 7 (n!)2
X /K de e e E=0 201 (5 )21 0 (e E — k) (56)
with
— ~cos(v2lv—=m+1/2)]¢)  sin(V2[v = +1/2)]¢)
Onle§ =k O === v 12] I e 2%
n 1 _
X {EZ —y —In[2c(E — )]} . (57)

Again, the main contribution to the integral comes from the region arraumt_/z. Expansion
around this point allows us to evaluate the integral, and we recover (41).
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(a) (b)
1.0 ‘ ‘ 1.0 ‘
08 1 osf :
0.6 4 o6 1
0.4F 1 o4 |
0.2- o 4 o02p :

~0.2F T4 —o2p \/ 1

0.4 | | | | 04 | | | |

Figure 5. Comparison between numerical data (——) and asymptotic form (- ---) of
Gfb(xyz,xyz/)/G;(xyz,xyz) at (@) ¢ = 3 and ¢) & = 5 forv = 1.5. In the latter case the
two curves are (almost) indistinguishable.

In figure 5 we compare the asymptotic expression (415f0¢xyz, xyz') with numerical
data. As expected, the differences get smaller for increasing valges of

6. Correlations for large separations |r — 7’|

The path-decomposition expansion, which we employed in section 4, is expedient for large
only. However, the range of validity of the representation of the previous section is not limited
to that regime, so that we can use it for smalk well. In particular, itis helpful in determining

the asymptotic behaviour of the correlation function for finitend large distances between
the points of observation, both in theand thez-direction.

6.1. Large |y — y/|

Let us go back to (48). In order to bring the square-root singularity-atx, (v) to the fore,
we write

\/533/2
72

Gu(xyz,xy'z) =

> / T e ) ) (58)
n Kn (V)
with

Sa®  Phwoe|v2E-0)]
mfgo dg/DZ I:\/z(é—/—,()]

en(k)—1/2

$nK) =

(59)

The functiong, () is analytic on the integration interval, and proportionat#~/2e~** for
k — 00. Hence, the asymptotics of (58) for largg are determined by the lower boundary
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of the integral only. With the help of the method of stationary phase [20] we find

/ e € e en () i) ~ [n]~Y/2 @A) sl (§>
Kn (V)

2
D215 [V2(E — ka(v)]

_ dfg () — - (60)
K e o7 8 D2y 5 [V26E —ka0)]
where the derivative of, (x) is negative. In [5] we have derived the identity
o _ -1
{ fo 6" D2 )12 (V2E - m)}
1 1 de, ()
=T’ [_en (k) + 5} D 12 (V) i (61)

This equality allows us to get rid of the normalization integral in (60). In this way we arrive
at the following asymptotic expression for thedependent Green function at largg and
finite &:
B3/2 d@r/4) sgrin) 1 1 ;o
NP 2( _ - QY
Gu(xyz, xy'z) = 23727572 r ( v+ 2) |77|3/ZZ d
n

3 di, (v) 132
<D 1o [VE ] D2 4o [VEE -] -S4 T e

The asymptotic expression simplifies considerably for the special case of a completely
filled lowest Landau level, that is for = 3/2 andn = 0. By using the representation
of the parabolic cylinder function in terms of confluent hypergeometric functions [15] we
find ko(v) = 0 and do(v)/dv = —/7/2. Employing (61) and insertin@;(v/2u) =
V2u exp(—u?/2), we arrive at the simple asymptotic expression
ARB3/2 B /4) sgrin) - 2 1
w94 In|3/2

for large |n| andv = 3/2. The asymptotic behaviour proportional [tg~%/? in (62) and

(63) is clearly induced by the presence of the wall, since the decay of the:bddipendent
Green function in the-direction is Gaussian, at least in the presence of a magnetic field (see
(13)). The algebraic decay is corroborated by a numerical evaluation of (48). Both results are
compared in figure 6.

Gu(xyz,xy'z) =~ (63)

6.2. Large |z — 7'|

To determine the asymptotics for large separations irgtgection we sey = y’ in (48).
Subsequently, we need to determine the asymptotic behaviour of the imaginary part of the
integral

D2 o 1o [V2E -]

fOOOdS_/DGZH(K)—l/Z [ﬁ(g_")]

for large|¢|. In order to obtain the asymptotics, we split the integration interval a 1.
Fork > «’ we can use (50) and (51). In the numerator we insert the asymptotic expression
for the parabolic cylinder function

Deyo-1/2 (V2E = 1)) ~ 272 ¥ 2= 1)""e™*/2 sinhcé — €2/2)  (65)

(64)

I— / " e V2l
Kn (V)
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0.0025

0.0020 |- b

0.0015 1

0.0010 7

0.0005 - 1

0.0000 : : : : :
0 5 10 15 20 25 30

n
Figure 6. Comparison ofy3/272|G¢, (xyz, xy'2)|/(v2B3/?) (—) até = 3,v = 1.5 and its

asymptotic value-( - - - -) for large|n|, according to (63).

which is valid for largex and finiteg. This relation can be derived by using (50), and the
asymptotic relations

Dy (ﬁu) o (—1)" 212 |y g2 (66)
and
9D, (v2u) .
— | & (—Dm2 2 mnl ju| e /? (67)
Vv
v=n

which are both valid for large negative In this way the contribution from > «’ to (64)
becomes

o0 n—1/2 o—k2  2n+1
wa dxexp(i¢2[v—<n+1/2>]|c|—i e« |<:|>

JanlJv—(n+1/2)

2n+2 2 _
k2 e sintP(kE — £2/2). (68)

x
7!

We now introduce a new integration variable- e’ 21 which impliesk ~ «/—1Int for
largex. The integral then gets the form

n+l t' 2n—l/2|é-|
I ~ ——— v/ / dr exp(—i l‘)
7 n! 0 JanlJv—(n+1/2)
sink?(v—Int & — £2/2
X ( “in7 ) (69)
with ¢/ = e /211 « 1. Note that there is a logarithmic singularityrat 0.

The asymptotic expansion of an integral of the form

t )
/ dr €' (—In)* (70)
0
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for ' < 1 and largex has a contribution from the lower boundary and the upper boundary.
The contribution from the lower boundary is [21]

:7 i(—l)’ (j‘ ) [Z (;) r® 1) (%')_k] ()" (71)
r=0

wherel'® () is thekth derivative ofl"(«). For functionsf (— In¢) that can be expressed as
a Laurent series i — In ¢ for smallz, one obtains the asymptotics of the integral

t/
/ dr € f(—Inr) (72)
0

for largeu by integrating the series term-by-term by means of (71). In fact, the contribution
from the lower boundary of the integral is

o (D [ (7 ) ay (TR [ f N0
S () (3) ] e 7
Let us now return to (69), which contains an integral that has the form of the complex
conjugate of (72). For this particular case one Was-Int) = sinf?(v/—Inté — £2/2)/
(—Int)andu = 2""Y2|¢|/ [ 7 n'/v = (n + 1/2)]. The term with- = 0in (73) dominates
the contribution from the lower boundary to the asymptotics, sifide ) is much bigger
than all its derivatives when is large. Using this fact, we get for the contribution from the
lower boundary = 0) to the asymptotics of (69)

sinf?(ﬁé_— 5_2/2)

2n+l .
i ANe s 1]

ﬁ’,“ u Inu
2= 2] g nt? (VT
A —|2 2 T§| Ir(1n|§+| 1/2) V2= 172K ] sth( In|¢lg — 5_2/2) : (74)

The contribution from the upper boundary=£ ') to the asymptotics of (69) can be found by
use of the same theorem from [21]. It is expected to cancel against the contribution from the
end-pointc = «’ of the integral

! 2 —_
12=/K dic @VZ=en[¢ | Dj“‘)—l/z [ﬁ@ f)] .
Kn (V) fOOO dg}:l DEZn(K)_l/2 [\/i(f/ _ K):I

Indeed, it is not too difficult to show that it does, by evaluating the contribution from the
end-point ak = «’ in I with the help of standard techniques [20]. Finally, we have to check
whether the end-point at = «,(v) contributes to the asymptotics . The phase has a
square-root singularity at that point. Using this fact, one finds that all terms in the asymptotic
expansion that originate from the lower boundarypfire real. Hence, they drop out when
taking the imaginary part af

Collecting our results, we have derived the asymptotic equality

Im7~ 2 Z[Tngr(l’:; Y2 cog(v/2lv — (n + 1/2)]¢ ) sint?(in € —£2/2)  (76)

which is valid for largg¢|. As a consequence we obtain thelependent Green function

2B3/2 sint?(/INT¢[E — £2/2)

n? 22In|g|

x> V2lv =+ /2] cos( Y2l — (n + 1/2)]¢ ) (77)

(75)

Gu(xyz, xy7) ~ —
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for large|¢|. This asymptotic form is valid at large separatigns- z’| and a finite distance

x from the wall. A comparison with (13) shows that the asymptotic behaviour changes
substantially owing to the presence of the wall. The simple algebraic tail (modulated by a
goniometric factor) which is valid in the bulk, is replaced by a more subtle decay involving a
logarithmic dependence dn— 7’|

7. Correlations near the wall

Let us return again to (48). Using (61) we may write it as

32__, poo Cain( AT T
Guxyz, xy'7) = _B—Z / dic €7 sin(v2[y : € (1¢) r? |:_6n (1) + %}
n fn (V)

2n3
_ d n
)(1)62’1 (K)—1/2 <\/—2K> D62,1 (K)—1/2 [\/z(%' — K):I ed/EK) . (78)

For small¢ the last parabolic cylinder function can be expanded in a Taylor series. According
to (47) the zeroth-order term of this series vanishes, so that the leading term fog smatl

first order ing. The derivative of the parabolic cylinder function occurring in this term fulfils
the Wronskian identity [15]

27

ad
Deor-12 (V26 ) 2D, (—v/2 ___ T (79)
ey ( ) dK ( ) v=€,(k)—1/2 r [_en(’() + %]
where (47) has been used again. Solving for the derivative we obtain
2B3/2¢2 o0 = sin(/2[v — &, ;
Gu(xyz, xy'7) ~ — 25 Z// dic €7 ( [vg & () ded(K). (80)
T Kn (V) i

The right-hand side can be simplified further by introducing the integration vakiabgtead
of «. In this way we arrive at the following approximate form of thedependent Green
function near the wall:

3252, pv _ inlv/200 =&
Gulxyz, xy'?) = 20 2é Z/ de éme)nw- (81)
~ Jn+1/2

s

As before we consider the casest 0 and¢ # O separately.

7.1. Case y # y'
Forz’ — zthe Green function becomes
23/283/252 ;v )
Gulxyz, xy'z) = TZ / » de &N /) "¢, (82)
n n+

Forlarge n| the asymptotic behaviour of the integral is determined by the value of the integrand
near the upper boundary. One finds

V2B3/2 g Br/4 sarin) g2 Z/ o) [ dica (v) } e

73/2|y3/2 dv
The same result can be obtained from (62) by expanding the last parabolic cylinder function
for smallé and using (79).

The asymptotic decay proportional 9| =%/2 in (83) seems to be at variance with the
behaviour of the correlations in the field-free case. For the latter case one finds

4ux? . ,
Gulerz, 1y'a) ~ = g sin[ V2t )] (84)

Gu(xyz, xy'z) ~ (83)

n
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by expanding (24) with (21) for smatl and retaining the terms dominant at lafge— y’|.
Hence, the correlations near the wall decay faster in the field-free case than in the case with
field. It should be noted that (83) is valid fpy| > 1 or|y — y’| > B~1/2. ForB tending to
0 the region of validity thus shifts towarde. Furthermore, the number of terms in the sum
becomes very large for smatl(sincev gets large), whereas the factor in front tends to 0, so
that taking the limitB — 0 in (83) is not trivial.

The decay of the field-free correlations can be derived in the present context by starting
from (82). Let us interchange the summation and the integral and split the latlesdt.
We get
[e=1/2]

de Vv — € Z ghn(en
n=0

1/2

€

v .
5 / de 40 /¢ =
n n+l/2

e—1/2

) -2
+/ de/v —€ Z gren(em, (85)
¢ n=0

Inthe second part at the right-hand side the sum consists of many terms fer daatiscussed
in the appendix, the values ©f (¢) are located in the interv{l—«/z—e, \/2—6] at least for all

n < [e —1/2] — 1. As a consequence, their average separation goes to zero proportional
to 1/./€. Itis therefore expedient to replace the summation avey an integration over a
continuous variable = «,(¢)/+/2¢. The second part in (85) then becomes

v 1 .
/ dev/v — € / do &Y% (¢, ) (86)
€’ -1

with p(e, o) do the number of values of,(¢) in the interval[\/Za, V2e(o + da)]. For

large|n| the dominant contribution in the integral owercomes from the endpoints. Since
the densityp (¢, o) at the endpoints = +1 is 2/2¢(1 F 0)¥/2/7 (see the appendix), the
expression (86) is for large|

23/4 v
/ de /v — eet/? COS(\/Z|17| — 37[/4) . (87)
E’

123/
The integral ovet can likewise be evaluated for lar@yg, as once again only the endpoints of
the integral contribute. The upper boundary gives

—x/i% sin(@n) (88)

while the contribution from the lower boundary in (87) will not be needed.

As a final step we have to consider the first part in (85). Here the summation can be
replaced by an integration fer>> 1 only. Of course, the contribution of the upper boundary
to the asymptotic expression has to cancel that of the lower boundary in (87), since the final
result should not depend on the choice0fThe lower boundary of the integral ovein the
first part of (85) does not contribute either. In fact, only the term with O survives fore
near 12 and the factorg(e¢) goes to infinity fore — 1/2, so that for largén| the contribution
from the lower boundary damps out by interference.

Collecting the results, we have found that f8Br — 0 and large|n| the asymptotic
behaviour of the.-dependent Green function near the wall is given by (82) with (88) inserted:

3/2,,72
Gu(xyz,xy'z) =~ —% Sih(@n) . (89)

After restoring the field-independent variables this result coincides with (84).
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7.2. Case 7z # 7

In this case the dependencegyie) drops out from (81)

B3/252Z / sm [v2[v =€, (k) ;]
+1/2

Gu(xyz, xyz) ~ (90)

¢
The integral is elementary. As a result we get for the Green function at small

3252
Guterz vz ~ =2yt 3 (VA = A72lccos| V2D — G 172)1¢
_smme_4n+yan]} (91)

By taking the limit¢ — 0 we obtain a simple form for the particle density near the wall:
25/2p3/22

o0 v - (v 172 ©2)

n

IO,LL ZG/L(rﬂr)%

which should be compared to the bulk density (14).

For large separations the first term between the curly brackets in (91) is dominant, so
that theu-dependent Green function for large separations and small distance from the wall
becomes

33/252
Gulerz, 1yd) = ==z 3 V2l =+ 1/l cos| V2 = (¥ 1720 | (93)
n

The same expression can also be found from (77), by pugtirg 1 and expanding the
hyperbolic function for small values of its argument.

For smallB it is convenientto return to the original variables — z’, « and to introduce
the new integration variable = ¢B in (90). Replacing in addition the summation by an
integration we get

sin[V2(u —u)(z — 2 ]
G (xyz, xyz)“—/ /

z—2z

(94)

Performing the mtegratlons we obtain the expression

21x
Gulxyz, xyz) ~ — )3 {2 sm[f(z -z )]

2(2

F( cos[f(z -z )]
u@— smLf_@—zﬂ} (95)

for the u-dependent Green function at positions near the wall in the field-free case. It can
easily be checked that the same expression is found by expanding the general form (24) for
smallx.

At large separationg — 7’| the dominanttermin (95) is the first one. It agrees with (84),
wheny andz are interchanged.

8. Discussion and conclusion

Our results show that the presence of a magnetic field and a wall leads to remarkable changes
in the pair correlation function of a completely degenerate non-interacting electron gas. In
the bulk the correlation function follows from (7), with theedependent Green functions (13)

and (21) for the cases with and without field. Whereas the correlation function is isotropic
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and decays algebraicalli¢—*) in the field-free case, it becomes anisotropic with a Gaussian
dependence in the transverse direction and an algebraicon&) in the parallel direction.

Inthe neighbourhood of a plane hard wall the pair correlation function becomes anisotropic
even for the field-free case. Its form, which follows directly from a reflection principle, is given
by (7) with (24). For two positions far apart, but at equal distance from the wall, the ensuing
correlation function decays algebraically, as in the bulk. However, the decay is proportional
to 8, as follows from (84).

If in addition to the wall a magnetic field is present, the pair correlation function in the
vicinity of the wall becomes anisotropic for two reasons, as both the field and the wall break
the symmetry. The general expression for the correlation function, for arbitrary field strengths
and arbitrary distances from the wall, follows by substitution of (48) in (7). Relatively far
from the wall the corrections to the bulk correlation function are still small. The first-order
correction terms were givenin (36) and (41), and checked numerically in figures 3 and 5. Near
the wall the correlation function—and in particular its tail for large separations—is modified
considerably compared to its form in the bulk. In fact, the qualitative difference between the
behaviour in the directions parallel and transverse to the field, which is a prominent feature
of the bulk correlation function, is lost in the vicinity of the wall. In both directions the tails
become algebraic, albeit with a different exponent. This is seen by inspecting (62) (or (83))
for the transverse direction and (77) (or (93)) for the parallel direction. In the former case
the decay is proportional to-3, whereas in the latter it is proportionalto®. Qualitatively,
the change in the decay of the transverse correlation function from Gaussian in the bulk to
algebraic near the wall can be understood in a semi-classical picture. In the bulk the cyclotron
motion of the particles leads to a strong localization of the correlations, which is associated
with a Gaussian decay. On approaching the wall, the so-called ‘skipping orbits’ along the wall
become important. They lead to a delocalization effect in the particle motion, which manifests
itself as an increase in the range of the correlations. In this way, the cross-over to an algebraic
decay of the correlation function finds an explanation.

In conclusion, we have shown that for a non-interacting electron gas the influence of a
wall on the correlations is quite considerable, especially in the presence of a magnetic field. It
would be interesting to determine the edge effects in the correlations for an interacting electron
gas in a magnetic field.
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Appendix. Zeros of the parabolic cylinder functions for large argument and index
The zeros ofD;, (z) satisfy the inequalityz| < 2/A +1/2, with the possible exception of a
single negative zero [22]. Far>> 1 the zeros in the neighbourhood|ef = 2,/A + 1/2 can

be determined by approximating the parabolic cylinder functions by Airy functions.
For positivez ando = z/ [ZN/A + 1/2] slightly smaller than 1, one has [22]

. 1 1 N6, g \VA 1\72/3
Dy (z) ~ 2M/2*93r (5)\+§> <A+§> (ﬁ) Ai ([4<A+§>} r) (A.1)
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with T given by

3T1 1 2/3
T = —{5 [Zarccoso) - ZU\/l_UZH ~ =273 — o). (A.2)
Forx > 1 the Airy function may be approximated as [22]
- ~ 1 - 2 3/2 7[
Al (—)C) ~ WSI“ <§X + Z) . (A3)

Using this approximation in (A.1), one finds the zeros of the parabolic cylinder function from
the zeros of the sine function. In terms of the variabl¢éhe zeros near = 1 are found as

L 1[3n(m —1/4)1%3
op=1— | —=——F75—

" 21 26+1/2)

with positive integern. Sincex is large, the zeros are closely spaced. In view of the main text
we introduces = A +1/2 instead of. Writing the number of zeros betweerando + do as

p(g, o) do we get

(A.4)

23/ 1/2
ple, o) = 78(1—6)/ (A.5)

as the density of zeros near= 1.
Similarly, for negativez; ando slightly bigger than—1 the parabolic cylinder function
can be written as [22]

1 1 1 1/6 _1 1/4
) 2" 72 2 1-o2

) R R )

(A.6)
with © ~ —2-1/3(1 + ). With the use of (A.3) and the analogous relation

. 1 2 b4
B|(—)C) ~ WCOS(éXB/Z + Z) (A?)

(valid for largex), one obtains the zeros &, (z) nearc = —1 as

1 +—1/4)7%3
on = —14 L[ 3T * 2 =1/ (A8)
2 200+ 1/2)
for integerm with m > —X + 1/4. The density of the zeros is found to be
23/2
p(e,0) = —e(l+o)"? (A.9)
T
for o near—1.
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