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Abstract
Equilibrium quantum statistical methods are used to study the pair correlation
function for a magnetized free-electron gas in the presence of a hard wall that
is parallel to the field. With the help of a path-integral technique and a Green
function representation, the modifications in the correlation function caused
by the wall are determined both for a non-degenerate and for a completely
degenerate gas. In the latter case the asymptotic behaviour of the correlation
function for large position differences in the direction parallel to the wall and
perpendicular to the field, is found to change from Gaussian in the bulk to
algebraic near the wall.

PACS numbers: 05.30.Fk, 75.20.−g

1. Introduction

As has been known since Bohret al [1], edge effects play an important role in the physics of
magnetized charged-particlesystems in equilibrium. In particular, the diamagnetic response of
these systems in the quantum regime is determined by electric currents flowing near the walls.
The profiles of these currents, and of the closely related particle density, for a non-interacting
magnetized electron gas near a hard wall parallel to the magnetic field have been investigated
in detail [2, 3–6]. Much less is known about the profiles in an interacting magnetized electron
gas.

Equally important for a physical understanding of the properties of an equilibrium
quantum system are the correlation functions. For positions in the bulk of the system these
have been studied extensively, both for a non-interacting magnetized electron gas and for
its interacting counterpart. For the non-interacting gas the bulk pair correlation function
can be determined analytically both for dilute systems at high temperatures and for dense
low-temperature systems, in which quantum degeneracy effects are important [7]. For the
interacting electron gas information on the behaviour of the bulk correlation functions is more
difficult to obtain. Even for the non-magnetized case these functions have surprising properties.
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In fact, it has been demonstrated that the bulk correlation functions of the interacting electron
gas possess slowly decaying tails with an algebraic dependence on the position difference [8].
For the magnetized interacting gas similar methods have been employed to prove the existence
of analogous algebraic tails, albeit with a different exponent [9].

The correlation functions are expected to change near a hard wall. For a non-magnetized
free-particle system these changes are easily determined by using a reflection principle [10].
The problem becomes a lot more complicated when either interactions between the particles
or a magnetic field or both are incorporated. In a recent paper [11] the interactions between the
charged particles have been taken into account in a model system consisting of two quantum
charges immersed in a classical plasma confined by a wall. An algebraic tail in the pair
correlation function of the quantum particles near the wall was found. However, the exponent
governing the algebraic tail turned out to be different from that of the bulk correlation functions
discussed above. The result corroborates earlier findings based on linear response arguments
[12]. The influence of a magnetic field on the surface correlation functions in the adopted
model system remains to be studied.

As the influence of a wall on the correlations in magnetized quantum systems is not yet
fully understood, it appears to be useful to try and investigate the correlation functions for the
relatively simple case of a non-interacting magnetized electron gas in the presence of a hard
wall. In the following we present some new results for this system. In particular, we will
analyse the correlations for the strongly degenerate case of high density and low temperature,
where the influence of Fermi statistics is important. Both strong and weak fields will be
considered, so that the number of filled Landau levels can vary considerably.

The paper is organized as follows. We start with two sections that serve to prepare the
ground. In section 2 we define the relevant correlation functions for a system of independent
particles and discuss their relation to the one-particle Green functions. The pair correlation
function in the bulk is considered in section 3, where the influence of the magnetic field
on the correlations is determined both analytically and numerically. After these preparatory
sections we start considering the influence of the wall in section 4. In that section we use the
so-called ‘path-decomposition expansion’, which follows from a path-integral formulation, to
determine the lowest-order corrections in the correlation functions at positions in the transition
region, where the presence of the wall starts to be felt. An alternative way to determine these
corrections is based on an eigenfunction expansion of the Green function, which is the subject
of section 5. The asymptotic form of the correlation functions for large position differences is
established in section 6, separately for directions parallel with and transverse to the magnetic
field. In section 7 the correlation functions for positions close to the wall are studied, again
for both directions. In the final section 8 some conclusions will be drawn.

2. Correlations

The equilibrium quantum statistical properties of a system of independent particles are
determined by the temperature Green function

Gβ(r, r′) = 〈r|e−βH |r′〉 =
∑
n

e−βEn ψn(r) ψ∗
n (r

′). (1)

Hereβ is the inverse temperature, andψn(r) andEn the eigenfunctions and eigenvalues of the
one-particle HamiltonianH, which is assumed to be independent of the spin of the particles.
The reduced single-particle density matrixρβ,µ(r, r′) of such a system at inverse temperature
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β and chemical potentialµ is found by incorporating the effects of quantum degeneracy. For
Fermi–Dirac particles one has

ρβ,µ(r, r′) = 2
∑
n

1

1 + eβ(En−µ)
ψn(r)ψ∗

n (r
′) (2)

where the spin degeneracy has been taken into account. The local particle densityρβ,µ(r) is
the diagonal part of (2).

For a completely degenerate system at zero temperature the reduced single-particle density
matrix becomes

ρµ(r, r′) = 2
∑
n

θ(µ − En)ψn(r)ψ∗
n (r

′) ≡ Gµ(r, r′) (3)

with θ the step function. The diagonal part gives the local particle densityρµ(r) of the
completely degenerate system. Theµ-dependent Green function, as defined here, is obtained
from the temperature Green function by an inverse Laplace transform [13]

Gµ(r, r′) = 1

2π i

∫ c+i∞

c−i∞
dβ eβµ

2

β
Gβ(r, r′) (4)

with c> 0.
Then-particle reduced density matrixρ(n)

β,µ(r, r′) follows from its one-particle counterpart
by a symmetrized factorization:

ρ
(n)
β,µ(r

n, r′ n) =
∑
π∈Sm

επ
n∏

j=1

ρβ,µ

(
rj , r′

π(j)

)
. (5)

Here the sum is taken over all permutations of then position vectors, withεπ the sign of
the permutation. The structure of then-particle reduced density matrix has been analysed
quite generally for a system of interacting particles by using a path-integral formalism [14].
The factorization property for a system of independent particles then follows as a special case.
The argument is not changed by incorporating an external magnetic field and a hard wall that
confines the system.

For the completely degenerate case a relation similar to (5) holds forρ
(n)
µ (r n, r ′n). In

particular, the diagonal part of the two-point reduced density matrix at zero temperature is

ρ(2)
µ (rr′, rr′) = Gµ(r, r)Gµ(r′, r′) − Gµ(r, r′)Gµ(r′, r). (6)

Often it is convenient to introduce the two-point correlation function

g(r, r′) = ρ
(2)
µ (rr′, rr′)
ρµ(r)ρµ(r′)

− 1 = − |Gµ(r, r′)|2
Gµ(r, r)Gµ(r′, r′)

. (7)

In the following we will study this correlation function, and the influence of a magnetic field
and a hard wall on its properties.

3. Correlations in the bulk

We consider a system of charged particles which move in a magnetic field directed along the
z-axis. The interaction between the particles is neglected. To describe the magnetic field we
adopt the Landau gauge, with vector potentialA = (0, Bx,0). The particles are confined to
the half-spacex > 0 by a plane hard wall atx = 0.
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For positions far from the wall the temperature Green functionGβ(r, r′) reduces to the
bulk Green functionGb

β(r, r′). The latter is given by [13]

Gb
β(r, r′) = 1√

2πβ

B

4π sinh(βB/2)
exp

[
− B

4 tanh(βB/2)
(r⊥ − r′

⊥)
2
]

× exp

[
iB

2
(x + x ′)(y − y ′)

]
exp

[
− (z − z′)2

2β

]
. (8)

Units have been chosen such that the charge and the mass of the particles drop out, while
h̄ and c have been put to 1 as well. From now on we will often measure distances in
terms of the cyclotron radius 1/

√
B. To that end we introduce the dimensionless variables

ξ̄ = √
B(x + x ′)/2, ξ = √

B(x − x ′), η = √
B(y − y ′) andζ = √

B(z − z′).
Theµ-dependent Green function follows by inserting (8) in (4). One finds

Gb
µ(r, r′) = 1

2π i

∫ c+i∞

c−i∞
dβ eβBν

B

25/2π3/2β3/2

1 − q2
0

q0

× exp

[
iξ̄η − 1 +q2

0

8q0
(ξ2 + η2)

]
exp

[
− ζ 2

2βB

]
(9)

with q0 = tanh(βB/4). The chemical potential is measured in terms of the energy difference
between adjacent Landau levels, by employing the dimensionless variableν = µ/B. Let us
use now the generating-function identity [15]

exp

[
− (1 − q0)

2

8q0
ξ2

]
= 4q0

(1 +q0)2

∞∑
n=0

Ln

(
ξ2

2

) (
1 − q0

1 +q0

)2n

(10)

to express the exponential function in terms of Laguerre polynomials. After substitution of
(1 − q0)/(1 +q0) = e−βB/2 this gives

Gb
µ(r, r′) = B3/2

√
2π3/2

exp

(
iξ̄η − ξ2 + η2

4

) ∞∑
n=0

Ln

(
ξ2 + η2

2

)

× 1

2π i

∫ c′+i∞

c′−i∞
ds es[ν−(n+1/2)] s−3/2 exp

(
−ζ 2

2s

)
(11)

where we have sets = βB andc′ = cB. The sum overn can be interpreted as a sum over
Landau levels.

The inverse Laplace transform in (11) can be found in [16]:
1

2π i

∫ c+i∞

c−i∞
ds est s−3/2 e−a/s = 1√

πa
sin

(
2
√
at

)
θ(t) (12)

for a > 0 andc > 0. Use of this identity in (11) results in the following expression for the
µ-dependent Green function in the bulk:

Gb
µ(r, r′) = B3/2

π2 exp

(
iξ̄ η − ξ2 + η2

4

)

×
∑
n

′
Ln

(
ξ2 + η2

2

)
sin

(√
2[ν − (n + 1/2)] ζ

)
ζ

. (13)

The prime indicates that the summation is only over those values ofn for whichν − (n + 1/2)
is positive, i.e. over the Landau levels that are at least partially filled. The bulk density follows
as the diagonal part of (13):

ρb
µ = Gb

µ(r, r) =
√

2B3/2

π2

∑
n

′ √
ν − (n + 1/2). (14)

The two-particle correlation function is found upon substitution of (13) and (14) in (7).
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The expressions (13) and (14) are particularly useful for strong fields when only a few
Landau levels are occupied. An alternative expression, which is useful for weak fields only, has
been derived in [7]. To study the limitB → 0 in (13), we return to the original variables, since
measuring the distances in terms of the cyclotron radius, or the chemical potential in terms
of the energy difference between adjacent Landau levels, becomes meaningless for vanishing
magnetic fields. The number of terms in the sum becomes large, as the upper limit is inversely
proportional toB at fixedµ. Furthermore, the argument of the Laguerre polynomial gets
small for fixedx − x ′ andy − y ′. Hence, we can use the asymptotic form of the Laguerre
polynomials [15]

Ln(u) ≈ eu/2J0

(√
2(2n + 1)u

)
(15)

which is valid foru/(n + 1/2)1/3 � 1. Use of this approximation gives

Gb
µ(r, r′) ≈ B3/2

π2 exp

[
iB(x + x ′)(y − y ′)

2

] ∑
n

′
J0

(√
2B(n + 1/2)|r⊥ − r′

⊥|
)

×sin
[√

2[µ − B(n + 1/2)](z − z′)
]

√
B(z − z′)

(16)

for small magnetic fields. The subscripts⊥ denote the transverse parts of the position vectors,
which follow by projection on thexy-plane.

If B approaches zero, the number of Landau levels becomes very large, and their spacing
becomes very small. Therefore, it is permitted to replace the summation over Landau levels
in (16) with an integral. In the limit of vanishingB we get

Gb
µ(r, r′) = 1

π2

∫ µ

0
dt J0

(√
2t |r⊥ − r′

⊥|
) sin

[√
2(µ − t)(z − z′)

]
z − z′ . (17)

With the help of the identity [17]∫ a

0
dx xν+1 sin

(
b
√
a2 − x2

)
Jν(x)

=
√
π

2
aν+3/2b(1 +b2)−ν/2−3/4Jν+3/2

(
a
√

1 + b2
)

(18)

for ν = 0, we arrive at

Gb
µ(r, r′) = 21/4µ3/4

π3/2

1

|r − r′|3/2J3/2

(√
2µ|r − r′|

)
. (19)

Note that the right-hand side is an isotropic function of the position difference, as should be
the case for a vanishing magnetic field. We can simplify it further by using the explicit form
for the Bessel function

J3/2(u) =
√

2

π

sinu − u cosu

u3/2 . (20)

The final result is

Gb
µ(r, r′) = − 1

π2|r − r′|2
[√

2µ cos
(√

2µ|r − r′|
)

− 1

|r − r′| sin
(√

2µ|r − r′|
)]

(21)

which is identical to what one gets by starting from the temperature Green function for the
non-magnetized system

Gb
β(r, r′) = 1

(2πβ)3/2 exp

[
− (r − r′)2

2β

]
(22)
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(a)

2 4 6 8 10
−0.02

−0.01

0.00

√µ r−r’ ||

(b)

2 4 6 8 10
−0.02

−0.01

0.00

√µ r−r’ ||

Figure 1. Bulk correlation functionsg(xyz, xy′z) (——), g(xyz, xyz′) (· · · · · ·) for B �= 0 and
(a) ν = 2, (b) ν = 5, andg(r, r′) (— · —) for B = 0. All curves start at−1 for r = r′.

and applying (4). The bulk density in the field-free case isρb
µ = (2µ)3/2/(3π2). The

two-particle correlation function in the bulk follows upon inserting (21) in (7).
In figure 1 we have plotted the bulk correlation function forB = 0 and forB �= 0 with

ν = 2 andν = 5. For non-vanishing magnetic field we focused on the correlation functions
with position differences that are either parallel with, or perpendicular to, the magnetic field.
For large fields, or, more precisely, for smallν, the correlation functions for the parallel and the
perpendicular directions differ considerably. For somewhat largerν, however, the correlation
functions become fairly similar, both in the nodal structure and in the amplitudes. As it turns
out, these similarities are manifest already forν = 5, where the number of completely filled
Landau levels is still rather low.

Comparing (21) with (13), we see that by turning on the magnetic field the range of the
correlations in the plane perpendicular to the magnetic field becomes smaller, with a Gaussian
instead of an algebraic decay. In contrast, the range of the correlations in the direction
parallel to the magnetic field becomes somewhat larger. In fact, although the decay remains
algebraic when the field is switched on, the dominant contribution in the tail of the correlation
function becomes inversely proportional to the square of the distance, whereas it is inversely
proportional to the fourth power of the distance in the field-free case.

4. Path-decomposition expansion

Introducing the wall atx = 0 makes the temperature Green function dependent on the distance
from the wall, i.e. the coordinatex. In the absence of a magnetic field the influence of the
wall on the Green function is easily found from a reflection principle [10]. The temperature
Green function becomes

Gβ(r, r′) = Gb
β(r, r′) − Gb

β(r, r′′) (23)
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with the bulk Green function (22) and the reflected positionr′′ defined as(x ′′, y ′′, z′′) =
(−x ′, y ′, z′). Likewise, theµ-dependent Green function gets the form

Gµ(r, r′) = Gb
µ(r, r′) − Gb

µ(r, r′′) (24)

with the bulk Green function (21).
When a magnetic field is present, the influence of the wall on the properties of the system

is more difficult to determine. In [6], we have seen that the temperature Green function can
be found from a path-decomposition expansion

Gβ(r, r′) =
∞∑
n=0

G
(n)
β (r, r′) (25)

where G
(n)
β (r, r′) is the contribution from paths that hit the walln times. This path-

decomposition expansion, which was first formulated in [18], is fully equivalent to the
multiple-reflection expansion as introduced in [19], and discussed for a confined magnetic
system in [4]. We have also seen in [6] that forr andr′ at large distances from the wall, the
terms with smalln in (25) are more important than those with largern. In particular, then = 1
term will give us the leading-order correction on the bulk quantities. The latter correspond to
n = 0, so that one hasG(0)

β (r, r′) = Gb
β(r, r′). If no field is present the expansion terminates

after the term withn = 1, for all distances from the wall.
In the particular case wherex = x ′, the transverse part of then = 1 term has the form

[4, 6]

G
(1)
⊥,β(xy, xy

′) = − B2

16π3/2

∫ β

0
dτ f (1)

β,τ (xy, xy
′) exp

[
g
(1)
β,τ (xy, xy

′)
]
. (26)

The functionsf (1)
β,τ (xy, xy

′) andg(1)β,τ (xy, xy
′) are given by

f
(1)
β,τ (xy, xy

′) = 1

2

(t1t2)
1/2

s1s2(t1 + t2)1/2

[(
1

t1
+

1

t2

)
ξ̄ + iη

]
(27)

and

g
(1)
β,τ (xy, xy

′) = −1

4

[(
1

t1
+

1

t2

)
ξ̄2 − 2iξ̄η +

η2

t1 + t2

]
(28)

with t1 = tanh(τB/2), s1 = sinh(τB/2), t2 = tanh((β − τ )B/2) ands2 = sinh((β − τ )B/2).

4.1. Case y �= y ′

If we setp = q2/
(
q2

0 − q2
)
, with q = tanh[(2τ − β)B/4] andq0 = tanh(βB/4), we can

write (26) as

G
(1)
⊥,β(xy, xy

′) = − B

27/2π3/2

1 − q2
0

q
3/2
0

exp

(
− ξ̄2

2q0
+

iξ̄η

2
− 1 +q2

0

16q0
η2

)

×
∫ ∞

0

dp√
p(1 +p)


ξ̄

√
1 +

(
1 − q2

0

)
p +

iη

2

q0√
1 +

(
1 − q2

0

)
p




× exp

[
−

(
1 − q2

0

)
p

2q0
ξ̄2 − 1 − q2

0

16q0

1 +
(
1 + q2

0

)
p

1 +
(
1 − q2

0

)
p
η2

]
. (29)

When ξ̄ is large, only small values of
(
1 − q2

0

)
p contribute, which implies that we can set√

1 +
(
1 − q2

0

)
p ≈ 1. Furthermore, we can replace the last exponential function with
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exp
[−(

1 − q2
0

)
η2/(16q0)

]
, at least as long asη is finite. If we make those substitutions

and use ∫ ∞

0

dp√
p(1 +p)

e−ap = ea/2K0(a/2) (30)

(whereK0 is the modified Bessel function of the second kind), we get

G
(1)
⊥,β(xy, xy

′) ≈ − B

27/2π3/2

(
ξ̄ +

iη

2
q0

) 1 − q2
0

q
3/2
0

× exp

(
−1 + q2

0

4q0
ξ̄2 + i

ξ̄ η

2
− η2

8q0

)
K0

(
1 − q2

0

4q0
ξ̄2

)
. (31)

If we are only interested in the non-degenerate case, where in general(1 − q2
0)ξ̄

2/q0
is large, we can use the asymptotic expansion forK0 [15]. Multiplying the result with the
longitudinal Green function, which is the same as in the bulk, we find the first-order correction
to the total temperature Green function in the approximate form

G
(1)
β (xyz, xy ′z) ≈ − B

27/2π3/2β1/2

√
1 − q2

0

q0
exp

(
− ξ̄2

2q0
+ i

ξ̄ η

2
− η2

8q0

)
. (32)

However, for the degenerate case we need the full complexity of (31).
In order to obtain results for the degenerate case, we now apply (4). In doing so we choose

the contour of integration by settingβ = (it + 1)ξ̄/B:

G(1)
µ (xyz, xy ′z) ≈ − B3/2

16π3 ξ̄1/2eiξ̄η/2
∫ ∞

−∞
dt

eνξ̄(it+1)

(it + 1)3/2

(
ξ̄ +

iη

2
q0

) 1 − q2
0

q
3/2
0

× exp

(
−1 + q2

0

4q0
ξ̄2 − η2

8q0

)
K0

(
1 − q2

0

4q0
ξ̄2

)
. (33)

In the new variablesq0 equals tanh[(it + 1)ξ̄/4]. From ξ̄ � 1 one findsq0 ≈ 1, which in
turn implies 1− q2

0 ≈ 4 exp[−ξ̄ (it + 1)/2]. This also means that for finiteη we may replace
ξ̄ + iηq0/2 with ξ̄ . With the help of the series representation of the modified Bessel function

K0(u) =
∞∑
n=0

[
n∑

m=1

1

m
− γ − log

(u
2

)]
1

22n(n!)2
u2n (34)

and the integral relation∫ ∞

−∞
dt

e(it+1)x

(it + 1)ν
= 2π xν−1

,(ν)
θ(x) (ν > 0) (35)

we arrive at the asymptotic expression

G(1)
µ (xyz, xy ′z) ≈ −B3/2 ξ̄

π5/2
e−ξ̄2/2 eiξ̄η/2 e−η2/8

∑
n

′ ξ̄4n

22n(n!)2

×
√
ν − (n + 1/2)

[
1

4[ν − (n + 1/2)]
+

n∑
m=1

1

m
− γ − ln

(
ξ̄2

2

)]
(36)

which is valid for large
√
Bx. Again, we recognize the sum over Landau levels. In fact, apart

from the phase eiξ̄η/2 and the factor e−η2/8, the result is identical to what we found in [6] for
r = r′.
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4.2. Case z �= z′

This case is considerably simpler than they �= y ′-case, since the temperature Green function
factorizes. The transverse part of the Green functions follows from (31) by takingη = 0.
Using the asymptotic expansion for the Bessel function and introducing the longitudinal part
of the Green function, one finds the total temperature Green function for the non-degenerate
case withz �= z′ as

G
(1)
β (xyz, xyz′) ≈ − B

27/2π3/2β1/2

√
1 − q2

0

q0
exp

(
− ξ̄2

2q0
− ζ 2

2βB

)
(37)

which is the analogue of (32).
To calculate theµ-dependent Green functionG(1)

µ (xyz, xyz′) for the degenerate case we
need to keep the Bessel function in (31). Withs = βB we get

G(1)
µ (xyz, xyz′) ≈ −B3/2 ξ̄

8π2

1

2π i

∫ c+i∞

c−i∞
ds

eνs

s3/2

1 − q2
0

q
3/2
0

exp

(
−1 +q2

0

4q0
ξ̄2

)

×K0

(
1 − q2

0

4q0
ξ̄2

)
exp

(
−ζ 2

2s

)
. (38)

We are free to choose the contour of integration, as long as it is in the right half-plane. By
choosingc large (i.e.,c = ξ̄ ), we can make the same approximations forq0 and 1−q2

0 as before.
In terms of the integration variables these approximations readq0 ≈ 1 and 1− q2

0 ≈ 4e−s/2.
Together with (34) this yields

G(1)
µ (xyz, xyz′) ≈ −B3/2 ξ̄

2π2 e−ξ̄2/2
∞∑
n=0

ξ̄4n

22n(n!)2
1

2π i

∫ ξ̄+i∞

ξ̄−i∞
ds e[ν−(n+1/2)]s

×
{

1

2

1

s1/2 +

[
n∑

m=1

1

m
− γ − ln

(
ξ̄2

2

)]
1

s3/2

}
exp

(
−ζ 2

2s

)
. (39)

The integral in this expression is still an inverse Laplace transform. With the help of (12) and
the analogous identity [16]

1

2π i

∫ c+i∞

c−i∞
ds est s−1/2 e−a/s = 1√

πt
cos

(
2
√
at

)
θ(t) (40)

for a > 0 (andc > 0) we finally get the asymptotic expression

G(1)
µ (xyz, xyz′) ≈ −B3/2 ξ̄

π5/2
e−ξ̄2/2

∑
n

′ ξ̄4n

22n(n!)2
√
ν − (n + 1/2)

×
{

cos
(√

2[ν − (n + 1/2)]ζ
)

4[ν − (n + 1/2)]

+
sin

(√
2[ν − (n + 1/2)]ζ

)
√

2[ν − (n + 1/2)]ζ

[
n∑

m=1

1

m
− γ − ln

(
ξ̄2

2

)]}
(41)

for large
√
Bx. This result looks a bit more complicated than (36). In the limitζ → 0 we

recoverG(1)
µ (xyz, xyz), as calculated in [6].

Before we discuss the expressions (36) and (41) in more detail, we will first show that the
same results can be derived using a different approach.
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5. Parabolic cylinder functions

Results equivalent to those of the previous section can be derived by using the explicit
representation of the temperature Green function in terms of parabolic cylinder functions,
which are the eigenfunctions of the transverse part of the system Hamiltonian. Because of
translation invariance in they-direction, it is convenient to use a Fourier transform and to write
the transverse part of the Hamiltonian as

H⊥(k) = −1

2

∂2

∂x2 +
1

2
(Bx − k)2. (42)

For fixedk, this Hamiltonian with boundary conditionψ(k, x = 0) = 0 defines an eigenvalue
problem. In terms of the eigenfunctionsψn(k, x) and the corresponding eigenvaluesEn(k)

we define the Fourier-transformed transverse energy Green function [5]

G⊥,E(k, x, x
′) =

∑
n

ψn(k, x)ψ
∗
n (k, x

′) δ [En(k) − E] (43)

where the eigenfunctions are normalized to
∫ ∞

0 dx|ψn(k, x)|2 = 1. In terms of this energy
Green function the (total) temperature Green function (1) is

Gβ(r, r′) = (2πβ)−1/2 exp[−(z − z′)2/2β]

×
∫ ∞

0
dE e−βE 1

2π

∫ ∞

−∞
dk eik(y−y ′) G⊥,E(k, x, x

′). (44)

Performing the inverse Laplace transform as in (4) and using (12), we obtain

Gµ(r, r′) = 1

π2

∫ µ

0
dE

sin
[√

2(µ − E)(z − z′)
]

z − z′

∫ ∞

−∞
dk eik(y−y ′) G⊥,E(k, x, x

′). (45)

We now choosex = x ′, as before, and switch again to the dimensionless variablesξ̄ , ζ
(and a dimensionless Fourier variableκ = k/

√
B as well). In terms of these, the energy

Green function is [5]

G⊥,E(k, x, x) =
√
B

∑
n

D2
εn(k)−1/2

[√
2(ξ̄ − κ)

]
∫ ∞

0 dξ̄ ′ D2
εn(κ)−1/2

[√
2(ξ̄ ′ − κ)

] δ[E − Bεn(κ)]. (46)

HereDλ(u) is a parabolic cylinder function [15]. Furthermore,εn(κ) is determined by the
boundary condition

Dεn(κ)−1/2

(
−

√
2κ

)
= 0. (47)

If we now carry out the integration overE in (45), we get

Gµ(xyz, xy
′z′) = B3/2

π2

∑
n

′ ∫ ∞

κn(ν)

dκ eiκη sin
(√

2[ν − εn(κ)] ζ
)

ζ

×
D2

εn(k)−1/2

[√
2(ξ̄ − κ)

]
∫ ∞

0 dξ̄ ′ D2
εn(κ)−1/2

[√
2(ξ̄ ′ − κ)

] (48)

whereκn(ν) is determined byεn[κn(ν)] = ν.
In figure 2 we have plotted the resulting correlation function, which we calculated

numerically for several values of̄ξ and for a value of the chemical potential, which corresponds
to a completely filled lowest Landau level. Even at moderately small distances from the wall
the influence of the confinement on the correlation function is not very big. In they-direction
the correlations become a little stronger. The same is true for the correlations in thez-direction,
at least for smallζ . However, the oscillating tail in the correlation function is suppressed by
the presence of the wall.
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Figure 2. Correlation functions (a) g(xyz, xy′z) and (b) g(xyz, xyz′) for ξ̄ = 1 (——), ξ̄ = 5
(— · —) and in the bulk (̄ξ → ∞, - - - -) for ν = 1.5. The curves for̄ξ = 5 and for the bulk are
(almost) indistinguishable.

5.1. Case y �= y ′

Taking the limitz′ → z or ζ → 0 in (48) is trivial. The resulting formula contains a phase-
factor eiκη, which is absent in the casey = y ′ as considered in [5]. We first split off the bulk
contribution

Gb
µ(xyz, xy

′z) =
√

2B3/2

π2

∑
n

′ ∫ ∞

−∞
dκ ei(κ+ξ̄)η

√
ν − (n + 1/2)√

π n!
D2

n

(
−

√
2κ

)
. (49)

The remainderGc
µ(xyz, xy

′z) = Gµ(xyz, xy
′z)−Gb

µ(xyz, xy
′z) gives the correction due to

the wall.
In order to obtain an asymptotic expansion ofGc

µ(xyz, xy
′z) for large x we split the

integration atκ ′ = α′ξ̄ , with 0 < α′ < 1 − 1
2

√
2, andκ ′′ = α′′ξ̄ , with α′′ > 1

2

√
2. As in the

case withr = r′, the contributions from the intervals [κn(ν), κ
′] and [κ ′′,∞) decay faster than

exp(−ξ̄2/2). With the help of the asymptotic expressions [5]

εn(κ) − (
n + 1

2

) ≈ 1√
π n!

2n e−κ2
κ2n+1 (50)

{∫ ∞

0
dξ̄ ′ D2

εn(κ)−1/2

[√
2(ξ̄ ′ − κ)

]}−1

≈ 1√
π n!

− 1

π(n!)2
2n+1 e−κ2

κ2n+1

[
n∑

m=1

1

m
− γ − ln

(√
2κ

)]
(51)

and

D2
εn(κ)−1/2

[√
2(ξ̄ − κ)

]
≈ 2n e−(ξ̄−κ)2 (ξ̄ − κ)2n

+
1√
π n!

22n+1 e−(ξ̄−κ)2 e−κ2
(ξ̄ − κ)2n κ2n+1ln

[√
2(ξ̄ − κ)

]
(52)
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Figure 3. Comparison between numerical data (——) and asymptotic form (- - - -) of the real
part ofGc

µ(xyz, xy
′z)/Gc

µ(xyz, xyz) at (a) ξ̄ = 3 and (b) ξ̄ = 5 for ν = 1.5.

one finds

Gc
µ(xyz, xy

′z) ≈
√

2B3/2

π2

∑
n

′ 22n+1

π(n!)2
√
ν − (n + 1/2)

×
∫ κ ′′

κ ′
dκ eiκη e−κ2

e−(ξ̄−κ)2 κ2n+1(ξ̄ − κ)2n Pn(κ, ξ̄ − κ) (53)

with

Pn(κ, ξ̄ − κ) = −
{

1

4[µ − (n + 1/2)]
+

n∑
m=1

1

m
− γ − ln[2κ(ξ̄ − κ)]

}
. (54)

We now expand the integrand in (53) aroundκ = ξ̄ /2:∫ κ ′′

κ ′
dκ eiκη e−κ2

e−(ξ̄−κ)2 κ2n+1(ξ̄ − κ)2n Pn(κ, ξ̄ − κ)

≈ eiξ̄ η/2 e−ξ̄2/2 (ξ̄ /2)4n+1Pn(ξ̄/2, ξ̄/2)
∫ ∞

−∞
dt eitη−2t2 (55)

since the main contribution comes from the region aroundκ = ξ̄ /2, at least forξ̄ � 1.
Evaluating the remaining integral gives us exactly (36).

Note that in this case, instead ofG(1)
µ (xyz, xy ′z), we have in fact calculated

Gc
µ(xyz, xy

′z). However, since the terms beyondn = 1 in the path-decomposition expansion
(25) are of higher order, the asymptotic form ofGc

µ(xyz, xy
′z) is in leading order identical

to that of G(1)
µ (xyz, xy ′z). In the present case we can easily take along more terms in

(54) (see [5]). The expansion aroundκ = ξ̄ /2 given here is only valid forη � ξ̄ . If
η is of the same order of magnitude asξ̄ , the terms that we left out would not be small
compared to the leading term and we would not get the right asymptotics. In figure 3 we
compare the results of a numerical evaluation of the exact expression for the real part of
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Figure 4. Check of the Gaussian decay, by evaluation of
√

8η−1[log(|Gc
µ(xyz, xy

′z)|/
|Gc

µ(xyz, xyz)|)]1/2, for ν = 1.5 and ξ̄ = 5 (——), ξ̄ = 4 (— · —) and ξ̄ = 3 (- - - -).
The dotted line (· · · · · ·) is the asymptotic value according to (36).

the wall correctionGc
µ(xyz, xy

′z)/Gc
µ(xyz, xyz), which follows from (48) and (49), and the

asymptotic form in leading order, as derived in (36). As expected, the agreement is best
for smallη. The imaginary part ofGc

µ(xyz, xy
′z)/Gc

µ(xyz, xyz) behaves in a similar way.
A striking feature of the asymptotic expansion (36) is its Gaussian decay proportional to

e−η2/8. It is slower than the decay of the bulkµ-dependent Green function (13), which is
proportional to e−η2/4. This somewhat slower decay is indeed corroborated by the numerical
evaluation ofGc

µ(xyz, xy
′z)/Gc

µ(xyz, xyz), as is shown in figure 4. For smallη and largēξ
(i.e. for the regime where (36) holds) the curves converge to the asymptotic value 1.

5.2. Case z �= z′

On settingy = y ′ in (48) the phase-factor eikη drops out. With the help of the same asymptotic
expressions as in the case withy �= y ′, and the same splitting of the integration interval, we
arrive at the asymptotic expression

Gc
µ(xyz, xy

′z) ≈
√

2B3/2

π2

∑
n

′ 22n+1

π(n!)2
√
ν − (n + 1/2)

×
∫ κ ′′

κ ′
dκ e−κ2

e−(ξ̄−κ)2 κ2n+1 (ξ̄ − κ)2n Qn(κ, ξ̄ − κ, ζ ) (56)

with

Qn(κ, ξ̄ − κ, ζ ) = −cos
(√

2[ν − (n + 1/2)] ζ
)

4[ν − (n + 1/2)]
− sin

(√
2[ν − (n + 1/2)] ζ

)
√

2[ν − (n + 1/2)]ζ

×
{

n∑
m=1

1

m
− γ − ln[2κ(ξ̄ − κ)]

}
. (57)

Again, the main contribution to the integral comes from the region aroundκ = ξ̄ /2. Expansion
around this point allows us to evaluate the integral, and we recover (41).
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Figure 5. Comparison between numerical data (——) and asymptotic form (- - - -) of
Gc
µ(xyz, xyz

′)/Gc
µ(xyz, xyz) at (a) ξ̄ = 3 and (b) ξ̄ = 5 for ν = 1.5. In the latter case the

two curves are (almost) indistinguishable.

In figure 5 we compare the asymptotic expression (41) forGc
µ(xyz, xyz

′) with numerical
data. As expected, the differences get smaller for increasing values ofξ̄ .

6. Correlations for large separations |r − r′|

The path-decomposition expansion, which we employed in section 4, is expedient for largex
only. However, the range of validity of the representation of the previous section is not limited
to that regime, so that we can use it for smallx as well. In particular, it is helpful in determining
the asymptotic behaviour of the correlation function for finitex and large distances between
the points of observation, both in they- and thez-direction.

6.1. Large |y − y ′|
Let us go back to (48). In order to bring the square-root singularity atκ = κn(ν) to the fore,
we write

Gµ(xyz, xy
′z) =

√
2B3/2

π2

∑
n

′ ∫ ∞

κn(ν)

dκ eiκη
√
κ − κn(ν) φn(κ) (58)

with

φn(κ) =
√
ν − εn(κ)√
κ − κn(ν)

D2
εn(κ)−1/2

[√
2(ξ̄ − κ)

]
∫ ∞

0 dξ̄ ′ D2
εn(κ)−1/2

[√
2(ξ̄ ′ − κ)

] . (59)

The functionφn(κ) is analytic on the integration interval, and proportional toκ2n−1/2e−κ2
for

κ → ∞. Hence, the asymptotics of (58) for large|η| are determined by the lower boundary
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of the integral only. With the help of the method of stationary phase [20] we find

∫ ∞

κn(ν)

dκ eiκη
√
κ − κn(ν) φn(κ) ≈ |η|−3/2 ei[κn(ν)η+(3π/4) sgn(η)] ,

(
3

2

)

×
√

−dεn(κ)

dκ

∣∣∣∣∣
κ=κn(ν)

D2
ν−1/2

[√
2(ξ̄ − κn(ν))

]
∫ ∞

0 dξ̄ ′ D2
ν−1/2

[√
2(ξ̄ ′ − κn(ν))

] (60)

where the derivative ofεn(κ) is negative. In [5] we have derived the identity{∫ ∞

0
dξ̄ ′ D2

εn(κ)−1/2

(√
2(ξ̄ ′ − κ)

)}−1

= − 1

2π
,2

[
−εn(κ) +

1

2

]
D2

εn(κ)−1/2

(√
2κ

) dεn(κ)

dκ
. (61)

This equality allows us to get rid of the normalization integral in (60). In this way we arrive
at the following asymptotic expression for theµ-dependent Green function at large|η| and
finite ξ̄ :

Gµ(xyz, xy
′z) ≈ B3/2 ei(3π/4) sgn(η)

23/2π5/2
,2

(
−ν +

1

2

)
1

|η|3/2

∑
n

′
eiκn(ν)η

×D2
ν−1/2

[√
2κn(ν)

]
D2

ν−1/2

[√
2(ξ̄ − κn(ν))

] [
−dκn(ν)

dν

]−3/2

. (62)

The asymptotic expression simplifies considerably for the special case of a completely
filled lowest Landau level, that is forν = 3/2 andn = 0. By using the representation
of the parabolic cylinder function in terms of confluent hypergeometric functions [15] we
find κ0(ν) = 0 and dκ0(ν)/dν = −√

π/2. Employing (61) and insertingD1(
√

2u) =√
2u exp(−u2/2), we arrive at the simple asymptotic expression

Gµ(xyz, xy
′z) ≈ 4B3/2 ei(3π/4) sgn(η)

π9/4 ξ̄2 e−ξ̄2 1

|η|3/2 (63)

for large |η| and ν = 3/2. The asymptotic behaviour proportional to|η|−3/2 in (62) and
(63) is clearly induced by the presence of the wall, since the decay of the bulkµ-dependent
Green function in they-direction is Gaussian, at least in the presence of a magnetic field (see
(13)). The algebraic decay is corroborated by a numerical evaluation of (48). Both results are
compared in figure 6.

6.2. Large |z − z′|
To determine the asymptotics for large separations in thez-direction we sety = y ′ in (48).
Subsequently, we need to determine the asymptotic behaviour of the imaginary part of the
integral

I =
∫ ∞

κn(ν)

dκ ei
√

2[ν−εn(κ)] |ζ | D2
εn(κ)−1/2

[√
2(ξ̄ − κ)

]
∫ ∞

0 dξ̄ ′ D2
εn(κ)−1/2

[√
2(ξ̄ ′ − κ)

] (64)

for large|ζ |. In order to obtain the asymptotics, we split the integration interval atκ ′ � 1.
For κ � κ ′ we can use (50) and (51). In the numerator we insert the asymptotic expression
for the parabolic cylinder function

Dεn(κ)−1/2

(√
2(ξ̄ − κ)

)
≈ 2n/2 + 1(−1)nκne−κ2/2 sinh(κξ̄ − ξ̄2/2) (65)
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Figure 6. Comparison ofη3/2π2|Gc
µ(xyz, xy

′z)|/(√2B3/2) (——) at ξ̄ = 3, ν = 1.5 and its
asymptotic value (· · · · · ·) for large|η|, according to (63).

which is valid for largeκ and finiteξ̄ . This relation can be derived by using (50), and the
asymptotic relations

Dn

(√
2u

)
≈ (−1)n 2n/2 |u|n e−u2/2 (66)

and

∂Dν

(√
2u

)
∂ν

∣∣∣∣∣∣
ν=n

≈ (−1)n+12−n/2√πn!|u|−n−1 eu
2/2 (67)

which are both valid for large negativeu. In this way the contribution fromκ � κ ′ to (64)
becomes

I1 ≈
∫ ∞

κ ′
dκ exp

(
i
√

2[ν − (n + 1/2)]|ζ | − i
2n−1/2 e−κ2

κ2n+1

√
π n!

√
ν − (n + 1/2)

|ζ |
)

× 2n+2

√
π n!

κ2n e−κ2
sinh2(κξ̄ − ξ̄2/2). (68)

We now introduce a new integration variablet = e−κ2
κ2n+1, which impliesκ ≈ √− ln t for

largeκ . The integral then gets the form

I1 ≈ 2n+1

√
π n!

ei
√

2[ν−(n+1/2)] |ζ |
∫ t ′

0
dt exp

(
−i

2n−1/2|ζ |√
π n!

√
ν − (n + 1/2)

t

)

×sinh2(√− ln t ξ̄ − ξ̄2/2
)

−ln t
(69)

with t ′ = e−κ ′2
κ ′2n+1 � 1. Note that there is a logarithmic singularity att = 0.

The asymptotic expansion of an integral of the form∫ t ′

0
dt eiut (−ln t)µ (70)
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for t ′ < 1 and largeu has a contribution from the lower boundary and the upper boundary.
The contribution from the lower boundary is [21]

i

u

∞∑
r=0

(−1)r
(µ
r

) [
r∑

k=0

( r
k

)
,(k)(1)

(π i

2

)r−k
]
(lnu)µ−r (71)

where,(k)(u) is thekth derivative of,(u). For functionsf (− ln t) that can be expressed as
a Laurent series in

√− ln t for small t, one obtains the asymptotics of the integral∫ t ′

0
dt eiut f (−ln t) (72)

for largeu by integrating the series term-by-term by means of (71). In fact, the contribution
from the lower boundary of the integral is

i

u

∞∑
r=0

(−1)r

r!

[
r∑

k=0

( r
k

)
,(k)(1)

(π i

2

)r−k
]

drf (lnu)

d(lnu)r
. (73)

Let us now return to (69), which contains an integral that has the form of the complex
conjugate of (72). For this particular case one hasf (−ln t) = sinh2(

√− ln t ξ̄ − ξ̄2/2)/
(− ln t) andu = 2n−1/2|ζ |/ [√

π n!
√
ν − (n + 1/2)

]
. The term withr = 0 in (73) dominates

the contribution from the lower boundary to the asymptotics, sincef (ln u) is much bigger
than all its derivatives whenu is large. Using this fact, we get for the contribution from the
lower boundary (t = 0) to the asymptotics of (69)

−i
2n+1

√
π n! u

ei
√

2[ν−(n+1/2)]|ζ | sinh2
(√

lnuξ̄ − ξ̄2/2
)

ln u

≈ −i
2
√

2[ν − (n + 1/2)]

|ζ | ln |ζ | ei
√

2[ν−(n+1/2)]|ζ | sinh2
(√

ln |ζ |ξ̄ − ξ̄2/2
)
. (74)

The contribution from the upper boundary (t = t ′) to the asymptotics of (69) can be found by
use of the same theorem from [21]. It is expected to cancel against the contribution from the
end-pointκ = κ ′ of the integral

I2 =
∫ κ ′

κn(ν)

dκ ei
√

2[ν−εn(κ)]|ζ | D2
εn(κ)−1/2

[√
2(ξ̄ − κ)

]
∫ ∞

0 dξ̄ ′ D2
εn(κ)−1/2

[√
2(ξ̄ ′ − κ)

] . (75)

Indeed, it is not too difficult to show that it does, by evaluating the contribution from the
end-point atκ = κ ′ in I2 with the help of standard techniques [20]. Finally, we have to check
whether the end-point atκ = κn(ν) contributes to the asymptotics ofI2. The phase has a
square-root singularity at that point. Using this fact, one finds that all terms in the asymptotic
expansion that originate from the lower boundary ofI2 are real. Hence, they drop out when
taking the imaginary part ofI.

Collecting our results, we have derived the asymptotic equality

Im I ≈ −2
√

2[ν − (n + 1/2)]

|ζ | ln |ζ | cos
(√

2[ν − (n + 1/2)]ζ
)

sinh2
(√

ln |ζ |ξ̄ − ξ̄2/2
)

(76)

which is valid for large|ζ |. As a consequence we obtain theµ-dependent Green function

Gµ(xyz, xyz
′) ≈ −2B3/2

π2

sinh2(√ln |ζ |ξ̄ − ξ̄2/2
)

ζ 2 ln |ζ |
×

∑
n

′√
2[ν − (n + 1/2)] cos

(√
2[ν − (n + 1/2)]ζ

)
(77)
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for large|ζ |. This asymptotic form is valid at large separations|z − z′| and a finite distance
x from the wall. A comparison with (13) shows that the asymptotic behaviour changes
substantially owing to the presence of the wall. The simple algebraic tail (modulated by a
goniometric factor) which is valid in the bulk, is replaced by a more subtle decay involving a
logarithmic dependence on|z − z′|.

7. Correlations near the wall

Let us return again to (48). Using (61) we may write it as

Gµ(xyz, xy
′z′) = −B3/2

2π3

∑
n

′ ∫ ∞

κn(ν)

dκ eiκη sin
(√

2[ν − εn(κ)] ζ
)

ζ
,2

[
−εn(κ) +

1

2

]

×D2
εn(κ)−1/2

(√
2κ

)
D2

εn(κ)−1/2

[√
2(ξ̄ − κ)

] dεn(κ)

dκ
. (78)

For smallξ̄ the last parabolic cylinder function can be expanded in a Taylor series. According
to (47) the zeroth-order term of this series vanishes, so that the leading term for smallξ̄ is of
first order inξ̄ . The derivative of the parabolic cylinder function occurring in this term fulfils
the Wronskian identity [15]

Dεn(κ)−1/2

(√
2κ

) ∂

∂κ
Dν

(
−

√
2κ

)∣∣∣∣
ν=εn(κ)−1/2

= 2
√
π

,
[−εn(κ) + 1

2

] (79)

where (47) has been used again. Solving for the derivative we obtain

Gµ(xyz, xy
′z′) ≈ −2B3/2ξ̄2

π2

∑
n

′ ∫ ∞

κn(ν)

dκ eiκη sin
(√

2[ν − εn(κ)]ζ
)

ζ

dεn(κ)

dκ
. (80)

The right-hand side can be simplified further by introducing the integration variableε instead
of κ . In this way we arrive at the following approximate form of theµ-dependent Green
function near the wall:

Gµ(xyz, xy
′z′) ≈ 2B3/2ξ̄2

π2

∑
n

′ ∫ ν

n+1/2
dε eiκn(ε)η

sin
[√

2(ν − ε)ζ
]

ζ
. (81)

As before we consider the casesη �= 0 andζ �= 0 separately.

7.1. Case y �= y ′

Forz′ → z the Green function becomes

Gµ(xyz, xy
′z) ≈ 23/2B3/2ξ̄2

π2

∑
n

′ ∫ ν

n+1/2
dε eiκn(ε)η

√
ν − ε. (82)

For large|η| the asymptotic behaviour of the integral is determined by the value of the integrand
near the upper boundary. One finds

Gµ(xyz, xy
′z) ≈

√
2B3/2 ei(3π/4) sgn(η)ξ̄2

π3/2|η|3/2

∑
n

′
eiκn(ν)η

[
−dκn(ν)

dν

]−3/2

. (83)

The same result can be obtained from (62) by expanding the last parabolic cylinder function
for small ξ̄ and using (79).

The asymptotic decay proportional to|η|−3/2 in (83) seems to be at variance with the
behaviour of the correlations in the field-free case. For the latter case one finds

Gµ(xyz, xy
′z) ≈ − 4µx2

π2(y − y ′)3
sin

[√
2µ(y − y ′)

]
(84)
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by expanding (24) with (21) for smallx and retaining the terms dominant at large|y − y ′|.
Hence, the correlations near the wall decay faster in the field-free case than in the case with
field. It should be noted that (83) is valid for|η| � 1 or |y − y ′| � B−1/2. ForB tending to
0 the region of validity thus shifts towards∞. Furthermore, the number of terms in the sum
becomes very large for smallB (sinceν gets large), whereas the factor in front tends to 0, so
that taking the limitB → 0 in (83) is not trivial.

The decay of the field-free correlations can be derived in the present context by starting
from (82). Let us interchange the summation and the integral and split the latter atε′ � 1.
We get

∑
n

′ ∫ ν

n+1/2
dε eiκn(ε)η

√
ν − ε =

∫ ε′

1/2
dε

√
ν − ε

[ε−1/2]∑
n=0

eiκn(ε)η

+
∫ ν

ε′
dε

√
ν − ε

[ε−1/2]∑
n=0

eiκn(ε)η. (85)

In the second part at the right-hand side the sum consists of many terms for eachε. As discussed

in the appendix, the values ofκn(ε) are located in the interval
[
−√

2ε,
√

2ε
]
, at least for all

n � [ε − 1/2] − 1. As a consequence, their average separation goes to zero proportional
to 1/

√
ε. It is therefore expedient to replace the summation overn by an integration over a

continuous variableσ = κn(ε)/
√

2ε. The second part in (85) then becomes∫ ν

ε′
dε

√
ν − ε

∫ 1

−1
dσ ei

√
2εσηρ(ε, σ ) (86)

with ρ(ε, σ ) dσ the number of values ofκn(ε) in the interval
[√

2εσ,
√

2ε(σ + dσ)
]
. For

large|η| the dominant contribution in the integral overσ comes from the endpoints. Since
the densityρ(ε, σ ) at the endpointsσ = ±1 is 23/2ε(1 ∓ σ)1/2/π (see the appendix), the
expression (86) is for large|η|

23/4

π1/2|η|3/2

∫ ν

ε′
dε

√
ν − εε1/4 cos

(√
2ε|η| − 3π/4

)
. (87)

The integral overε can likewise be evaluated for large|η|, as once again only the endpoints of
the integral contribute. The upper boundary gives

−
√

2
ν

η3 sin
(√

2νη
)

(88)

while the contribution from the lower boundary in (87) will not be needed.
As a final step we have to consider the first part in (85). Here the summation can be

replaced by an integration forε � 1 only. Of course, the contribution of the upper boundary
to the asymptotic expression has to cancel that of the lower boundary in (87), since the final
result should not depend on the choice ofε′. The lower boundary of the integral overε in the
first part of (85) does not contribute either. In fact, only the term withn = 0 survives forε
near 1/2 and the factorκ0(ε) goes to infinity forε → 1/2, so that for large|η| the contribution
from the lower boundary damps out by interference.

Collecting the results, we have found that forB → 0 and large|η| the asymptotic
behaviour of theµ-dependent Green function near the wall is given by (82) with (88) inserted:

Gµ(xyz, xy
′z) ≈ −4B3/2νξ̄2

π2η3 sin
(√

2νη
)
. (89)

After restoring the field-independent variables this result coincides with (84).
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7.2. Case z �= z′

In this case the dependence onκn(ε) drops out from (81)

Gµ(xyz, xyz
′) ≈ 2B3/2ξ̄2

π2

∑
n

′ ∫ ν

n+1/2
dε

sin
[√

2[ν − εn(κ)]ζ
]

ζ
. (90)

The integral is elementary. As a result we get for the Green function at smallx

Gµ(xyz, xyz
′) ≈ −2B3/2ξ̄2

π2ζ 3

∑
n

′ {√
2[ν − (n + 1/2)]ζcos

[√
2[ν − (n + 1/2)] ζ

]

− sin
[√

2[ν − (n + 1/2)] ζ
]}

. (91)

By taking the limitζ → 0 we obtain a simple form for the particle density near the wall:

ρµ = Gµ(r, r) ≈ 25/2B3/2ξ̄2

3π2

∑
n

′
[ν − (n + 1/2)]3/2 (92)

which should be compared to the bulk density (14).
For large separations the first term between the curly brackets in (91) is dominant, so

that theµ-dependent Green function for large separations and small distance from the wall
becomes

Gµ(xyz, xyz
′) ≈ −2B3/2ξ̄2

π2ζ 2

∑
n

′√
2[ν − (n + 1/2)] cos

[√
2[ν − (n + 1/2)]ζ

]
. (93)

The same expression can also be found from (77), by puttingξ̄ � 1 and expanding the
hyperbolic function for small values of its argument.

For smallB it is convenient to return to the original variablesx, z− z′, µ and to introduce
the new integration variableu = εB in (90). Replacing in addition the summation by an
integration we get

Gµ(xyz, xyz
′) ≈ 2x2

π2

∫ µ

0
dt

∫ µ

t

du
sin

[√
2(µ− u)(z − z′)

]
z − z′ . (94)

Performing the integrations we obtain the expression

Gµ(xyz, xyz
′) ≈ − 2µx2

π2(z − z′)3

{
2 sin

[√
2µ(z − z′)

]
+

6√
2µ(z − z′)

cos
[√

2µ(z − z′)
]

− 3

µ(z − z′)2
sin

[√
2µ(z − z′)

]}
(95)

for theµ-dependent Green function at positions near the wall in the field-free case. It can
easily be checked that the same expression is found by expanding the general form (24) for
smallx.

At large separations|z − z′| the dominant term in (95) is the first one. It agrees with (84),
wheny andz are interchanged.

8. Discussion and conclusion

Our results show that the presence of a magnetic field and a wall leads to remarkable changes
in the pair correlation function of a completely degenerate non-interacting electron gas. In
the bulk the correlation function follows from (7), with theµ-dependent Green functions (13)
and (21) for the cases with and without field. Whereas the correlation function is isotropic
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and decays algebraically (∝r−4) in the field-free case, it becomes anisotropic with a Gaussian
dependence in the transverse direction and an algebraic one (∝r−2) in the parallel direction.

In the neighbourhood of a plane hard wall the pair correlation function becomes anisotropic
even for the field-free case. Its form, which follows directly from a reflection principle, is given
by (7) with (24). For two positions far apart, but at equal distance from the wall, the ensuing
correlation function decays algebraically, as in the bulk. However, the decay is proportional
to r−6, as follows from (84).

If in addition to the wall a magnetic field is present, the pair correlation function in the
vicinity of the wall becomes anisotropic for two reasons, as both the field and the wall break
the symmetry. The general expression for the correlation function, for arbitrary field strengths
and arbitrary distances from the wall, follows by substitution of (48) in (7). Relatively far
from the wall the corrections to the bulk correlation function are still small. The first-order
correction terms were given in (36) and (41), and checked numerically in figures 3 and 5. Near
the wall the correlation function—and in particular its tail for large separations—is modified
considerably compared to its form in the bulk. In fact, the qualitative difference between the
behaviour in the directions parallel and transverse to the field, which is a prominent feature
of the bulk correlation function, is lost in the vicinity of the wall. In both directions the tails
become algebraic, albeit with a different exponent. This is seen by inspecting (62) (or (83))
for the transverse direction and (77) (or (93)) for the parallel direction. In the former case
the decay is proportional tor−3, whereas in the latter it is proportional tor−4. Qualitatively,
the change in the decay of the transverse correlation function from Gaussian in the bulk to
algebraic near the wall can be understood in a semi-classical picture. In the bulk the cyclotron
motion of the particles leads to a strong localization of the correlations, which is associated
with a Gaussian decay. On approaching the wall, the so-called ‘skipping orbits’ along the wall
become important. They lead to a delocalization effect in the particle motion, which manifests
itself as an increase in the range of the correlations. In this way, the cross-over to an algebraic
decay of the correlation function finds an explanation.

In conclusion, we have shown that for a non-interacting electron gas the influence of a
wall on the correlations is quite considerable, especially in the presence of a magnetic field. It
would be interesting to determine the edge effects in the correlations for an interacting electron
gas in a magnetic field.
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Appendix. Zeros of the parabolic cylinder functions for large argument and index

The zeros ofDλ(z) satisfy the inequality|z| < 2
√
λ + 1/2, with the possible exception of a

single negative zero [22]. Forλ � 1 the zeros in the neighbourhood of|z| = 2
√
λ + 1/2 can

be determined by approximating the parabolic cylinder functions by Airy functions.
For positivez andσ = z/

[
2
√
λ + 1/2

]
slightly smaller than 1, one has [22]

Dλ(z) ≈ 2λ/2+1/3,

(
1

2
λ +

1

2

) (
λ +

1

2

)1/6 ( −τ

1 − σ 2

)1/4

Ai

([
4

(
λ +

1

2

)]2/3

τ

)
(A.1)
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with τ given by

τ = −
{

3

2

[
1

4
arc cos(σ ) − 1

4
σ

√
1 − σ 2

]}2/3

≈ −2−1/3(1 − σ). (A.2)

Forx � 1 the Airy function may be approximated as [22]

Ai(−x) ≈ 1√
πx1/4

sin

(
2

3
x3/2 +

π

4

)
. (A.3)

Using this approximation in (A.1), one finds the zeros of the parabolic cylinder function from
the zeros of the sine function. In terms of the variableσ , the zeros nearσ = 1 are found as

σm = 1 − 1

2

[
3π(m − 1/4)

2(λ + 1/2)

]2/3

(A.4)

with positive integerm. Sinceλ is large, the zeros are closely spaced. In view of the main text
we introduceε = λ + 1/2 instead ofλ. Writing the number of zeros betweenσ andσ + dσ as
ρ(ε, σ ) dσ we get

ρ(ε, σ ) = 23/2

π
ε(1 − σ)1/2 (A.5)

as the density of zeros nearσ = 1.
Similarly, for negativez andσ slightly bigger than−1 the parabolic cylinder function

can be written as [22]

Dλ(z) ≈ 2λ/2+1/3,

(
1

2
λ +

1

2

) (
λ +

1

2

)1/6 ( −τ

1 − σ 2

)1/4

×
{

cos(πλ)Ai

([
4

(
λ +

1

2

)]2/3

τ

)
− sin(πλ)Bi

([
4

(
λ +

1

2

)]2/3

τ

)}

(A.6)

with τ ≈ −2−1/3(1 +σ). With the use of (A.3) and the analogous relation

Bi(−x) ≈ 1√
πx1/4

cos

(
2

3
x3/2 +

π

4

)
(A.7)

(valid for largex), one obtains the zeros ofDλ(z) nearσ = −1 as

σm = −1 +
1

2

[
3π(m + λ − 1/4)

2(λ + 1/2)

]2/3

(A.8)

for integerm with m � −λ + 1/4. The density of the zeros is found to be

ρ(ε, σ ) = 23/2

π
ε(1 +σ)1/2 (A.9)

for σ near−1.
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[20] Erdélyi A 1956Asymptotic Expansions (New York: Dover) p 51
[21] Wong R 1989Asymptotic Approximations of Integrals (Boston: Academic) p 74
[22] Abramowitz M and Stegun I A 1972Handbook of Mathematical Functions (New York: Dover) ch 19


